6

Performance Tuning

Car manufacturers often develop for the mass market, and strive to develop a
"best fit" product that will be acceptable to the majority of customers. The prod-
uct (in this case a car) will operate flawlessly for 90% of the people and give
years of service. Sometimes, customers wish to tune their cars to work better
under specific operating conditions. This may include the addition of snow
tires, a supercharger or an engine additive. This optimisation will ensure that
the car delivers the best performance for the customer relative to their envi-
ronment. Networking hardware and software are a bit like this. Most times the
default settings will be optimal, but there will be times when some optimisation
is required to get the best performance for your specific environment.

The key to optimisation is understanding why you are optimising in the first
place, and knowing the ramifications of the changes you are making. It was
C.A.R. Hoare that said, "Premature optimization is the root of all evil in pro-
gramming." If you upgrade your car by installing a massive supercharger be-
cause you are having trouble getting around corners, you are probably not go-
ing to achieve your goal. The car will go faster, but you will probably have an
accident on your first corner when your woefully inadequate suspension de-
cides to quit. If you understand the problem first, that the bad cornering was
caused by poor suspension and not by engine output, then you can avoid an
unnecessary (and expensive) upgrade as well as a potentially bad accident.
There are a couple of things to remember when embarking on any optimisation:

1. Practice change control. Make backups of any configuration files you
alter, so you can revert to an older version should it prove necessary.

2. Take a baseline of the performance before and after changing any set-
tings. How else will you know if your settings have had a positive effect?
This also may not be an exact numeric measurement, but could be the re-
sults of an operation. For example, if a user gets an error message when

178 Chapter 6: Performance Tuning

they attempt to do something, making a change should make the error go
away, or at least change to something more informative.

3. Make sure you understand the problem you are trying to address. If it
is unclear precisely where the problem lies, it is even more important to
make backups before you make any significant changes.

4. Document the change. This helps others understand why a change was
made. Keeping a system change log can help you build a bigger picture of
the state of the system, and may indicate long-term problems before they
occur.

5. Don't make a change unless you have a reason to. If everything is
working well enough that utilisation is acceptable and the users are happy,
then why make changes?

There are system administrators who will swear blind that a particular optimisa-
tion change has fixed a problem, but they often cannot give actual proof when
asked. This is usually because they do not understand what they have done or
cannot measure the effect of the change. Defaults are there for a reason, so
unless you have a valid reason to change the defaults, don't do it!

Of course, even when you fully understand the nature of the problem and the
limitations of the system you are working with, optimisation can only take you
so far. When you have exhausted optimisation techniques, it may be time to
upgrade your hardware or software.

Squid cache optimisation

The default Squid settings are sufficient for most smaller networks. While
these settings may work well for many installations, maximum performance can
be achieved in large installations by making some changes to the defaults.
Since software authors cannot know ahead of time how aggressively Squid
may use system resources, the default settings are intentionally conservative.
By fully optimising Squid to fit your server hardware, you can make the best
possible use of the server resources and squeeze the maximum performance
from your network.

Of course, no amount of configuration tweaking can help Squid run on hard-
ware that simply can't handle the network load. Some of the parameters that
may need to be changed to match your particular network include the server
hardware itself, the disk cache and memory cache sizes, and even ACL lists.
You will also need to know when (and how) to use multiple caches effectively
when a single caching server simply isn't enough. This section will show you
how to make the best possible caching solution for your network.

Chapter 6: Performance Tuning 179

Squid optimisation is, of course, a complex subject in itself. For a more de-
tailed explanation of this topic we suggest you refer to Duane Wessels' excel-
lent book, Squid: The Definitive Guide.

Cache server hardware

The type of hardware you need to dedicate to your Squid cache depends on
the amount of traffic that flows through it. Even moderately busy networks re-
quire little more than a typical desktop PC for use as the proxy server. Monitor-
ing your CPU utilisation over time will help you to determine if you need to up-
grade the processing power of your cache server. Squid runs as a single proc-
ess, so using a multiprocessor machine will not give you much benefit. In
terms of disks, the cache should ideally reside on a separate disk with its own
data channel (e.g. the secondary IDE master with no slave on the same chan-
nel, or on its own SCSI or SATA bus) to give you the greatest performance
benefit. It is very common to run the operating system on one disk and install
the cache on another disk. This way, regular system activities (such as writing
to the log files) do not interfere with access to the cache volumes. You will get
better performance with a fast disk of adequate size, rather than a large disk
with slower access times.

If you use RAID in your server, installing your cache on a RAIDO or RAID1 is
acceptable. Squid already spreads the data load across multiple disks, so
there is really no advantage to using RAIDO. You definitely want to avoid using
RAIDS5 for your cache. From the Squid FAQ:

Squid is the worst case application for RAID5, whether hardware or soft-
ware, and will absolutely kill the performance of a RAID5. Once the cache
has been filled Squid uses a lot of small random writes which [is] the worst
case workload for RAIDS5, effectively reducing write speed to only little
more than that of one single drive.

Generally seek time is what you want to optimise for Squid, or more pre-
cisely the total amount of seeks/s your system can sustain. Choosing the
right RAID solution generally decreases the amount of seeks/s your system
can sustain significantly.

You can still place the operating system (or other volumes) on a RAID 5 disk
set for fault tolerance. Simply install the cache volumes on their own disks out-
side the RAID. The cache volumes are very quick to re-create in the case of a
disk failure.

Squid also loves to use system RAM, so the more memory that is installed, the
faster it will run. As we will see, the amount of RAM required increases as your
disk cache size increases. We will calculate precisely how much is needed on
page 181.

180 Chapter 6: Performance Tuning

There is also such a thing as having too many resources. An enormous disk
and RAM cache is useless unless your clients are actually making cacheable
requests. If your cache is very large and full of unusable data, it can increase
cache access times. You should adjust the size of your cache to fit the amount
of data your clients request.

Tuning the disk cache

A question often asked is, "How big should my cache volume be?" You might
think that simply adding disk space will increase your hit rate, and therefore
your performance will improve. This is not necessarily true. There is a point
where the cache hit rate does not climb significantly even though you increase
the available disk space. Cached objects have a TTL (Time To Live) that
specifies how long the object can be kept. Every requested page is checked
against the TTL, and if the cached object is too old, a new copy is requested
from the Internet and the TTL is reset.

This means that huge cache volumes will likely be full of a lot of old data that
cannot be reused. Your disk cache size should generally be between 10 and 18
GB. There are quite a few cache administrators that are running large cache
disks of 140 GB or more, but only use a cache size of around 18GB. If you
specify a very large cache volume, performance may actually suffer. Since
Squid has to manage many concurrent requests to the cache, performance can
decrease as the requests per second rise. With a very large cache, the bus
connected to the disk may become a bottleneck. If you want to use a very large
disk cache, you are better off creating smaller cache volumes on separate
disks, and distributing the disks across multiple channels.

The cache_dir configuration directive specifies the size and type of disk
cache, and controls how it is arranged in directories on the disk.

For a very fast link of 8 Mbps or more, or for a large transparent proxy at an
ISP, you might want to increase the cache size to 16 GB. Adding this line to
your squid.conf will create a 16 GB disk cache.

cache dir aufs /var/spool/squid 16384 32 512

The aufs argument specifies that we want to use the new Squid on-disk stor-
age format, formally referred to as Squid's async 10 storage format. The cache
will be stored in /var/spool/squid. The third argument (16384) specifies
the maximum size of the cache, in megabytes. The last two arguments (32
and 512) specify the number of first and second level directories to be created
under the parent directory of the cache. Together, they specify a total of x *y
directories used by Squid for content storage. In the above example, the total
number of directories created will be 16384 (32 top level directories, each con-
taining 512 subdirectories, each containing many cached objects). Different

Chapter 6: Performance Tuning 181

filesystems have different characteristics when dealing with directories that
contain large numbers of files. By spreading the cache files across more direc-
tories, you can sometimes achieve a performance boost, since the number of
files in a given directory will be lower. The default value of 16 and 256 is nearly
always sufficient, but they can be adjusted if desired.

If you are using Linux as your operating system, the best file systems to use
are ext2fs/ext3fs or reiserfs. Cache filesystems using ext2fs/ext3fs or reiserfs
should be mounted with the noatime option (specified in /etc/£fstab). If you
are using reiserfs, you should add the notail mount option as well. The noa-
time option tells the operating system not to preserve the access times of the
file, and so saves overhead. The notail tells the file system to disable pack-
ing of files into the file system tree, which is used for saving space. Both these
settings have a significant impact on disk performance.

For example, to mount the reiserfs filesystem on /dev/sdbl on /cachel, add
this line to your /etc/fstab:

/dev/sdbl /cachel reiserfs notail,noatime 1 2

Remember that if you replace a cache volume, you will need to start Squid with
the -z option once in order for the cache directories to be created. Also re-
member to make sure the cache directory is owned by the Squid user, other-
wise Squid will not be able to write to the disk.

The size of your disk cache has a direct impact on the amount of memory
needed on your server. In the next section, we will see how to calculate the
required amount of system RAM for a given disk cache size.

Memory utilisation

Memory is very important to Squid. Having too little RAM in your machine will
certainly reduce the effective size of your cache, and at worst can bring a sys-
tem to its knees. If your Squid server is so low on RAM that it starts using
swap space, the Squid process will quickly consume all available resources.
The system will "thrash" as it attempts to allocate memory for Squid that
causes the rest of the system, and eventually the Squid process itself, to be
swapped out to disk.

While more RAM is nearly always better, a good rule of thumb is to allocate 10
MB of RAM per GB of cache specified by your cache_dir directive, plus the
amount specified by the cache_mem directive (page 182), plus another 20 MB
for additional overhead. Since this memory is dedicated to Squid, you should
also add enough additional memory to run your operating system.

182 Chapter 6: Performance Tuning

For example, a 16 GB disk cache would require 160MB of memory. Assuming
that cache_mem is set to 32 MB, this would require:

160 MB + 32 MB + 20 MB = 212 MB

Squid itself will use approximately 212 MB of RAM. You should add enough
additional RAM to accommodate your operating system, so depending on your
needs, 512 MB or more of RAM would be a reasonable total amount for the
cache server.

The default Squid settings allocate 100 MB for the disk cache and 8 MB for the
memory cache. This means that you will need roughly 30 MB of RAM, plus
enough for your operating system, in order to run Squid "out of the box." If you
have less than this, Squid will likely start to swap at busy times, bringing net-
work access to a crawl. In this case, you should either adjust your settings to
use less than the default, or add more RAM.

Tuning the hot memory cache

The cache_mem directive specifies the maximum amount of RAM to be used
for in-transit, hot, and negative-cached objects. In-transit objects represent
incoming data, and take the highest priority. Hot objects are those that receive
many on-disk cache hits. These are moved to RAM to speed up future re-
sponses when they are requested. Negative cached objects are objects that
returned an error on retrieval, such as a refused connection or a 404 Not
Found. Note that the cache_mem directive does NOT specify the maximum
size of the Squid server process, but only applies as a guideline to these three
parameters, and may occasionally be exceeded. If you have a lot of memory
available on your box you should increase this value, since it is much faster for
Squid to get a cached file from memory rather than from the disk.

cache _mem 16 MB

The amount of memory is specified in 4 kilobyte blocks, and should not be too
large. The default is 8 MB. Squid performance degrades significantly if the
process begins to use swap space, so be sure there is always sufficient free
memory when the cache server is being used at peak times. Use the equation
above to calculate precisely how much RAM is required for your settings.

Cacheable content limits

The configuration directive maximum_object_size specifies the largest ob-
ject that will be cached. Setting it low will probably increase the responsive-
ness of your cache, while setting it high will increase your byte hit ratio. Expe-
rience has shown that most requests are under 10 KB (you can confirm this for
yourself with calamaris, page 81). If you set this value too high (say, 1 GB or

Chapter 6: Performance Tuning 183

more to cache movies and other large content) then your hit rate will probably
decline as your disk gets filled up with large files. The default is 4 MB.

maximum object_size 64 MB

You can also configure the maximum size of objects in memory using the
maximum_object_size_in_memory directive. Setting this to a low value is
generally a good idea, as it prevents large objects from holding precious sys-
tem memory. Typically around 90% of your requests will fit under 20K.

maximum object size_in memory 20 KB

You can determine the optimum value for this setting by looking at your Squid
logs once it is up and running for some time. An analysis of the Squid log files
at my university shows that 88% of the requests are under 10K. The default
maximum memory object size is 8 KB.

Access Control List (ACL) optimisation

Squid has two types of ACL components: ACL elements and ACL rules. Ele-
ments allow you to match particular attributes of a given request (such as
source IP, MAC address, user name, or browser type). You then use rules to
determine whether access is granted or denied to requests that match a par-
ticular element.

ACL elements are processed with OR logic. This means that Squid will stop
processing the ACL as soon as a match occurs. To optimise the processing of
your ACLs, you should arrange the list so that the most likely matches appear
first. For example, if you define an element called badsites that contains a
list of sites that are to be blocked, you should place the most likely site to be
visited first. If you need to block www.ccn.com and www.mynewsite.com the
ACL should be:

acl badsites dstdomain www.cnn.com www.mynewsite.com

If you find yourself making a large list of users (or any other information, such
as IP or MAC addresses), you should place the items that have more chance of
being matched at the front of the list.

When matching ACL rules, Squid uses AND logic. Therefore, you should list
the least-likely-to-match rules first. For example, if you have a ACL called 1o-
calnet that matches any host on your local network, and an ACL called bad-
sites that lists forbidden sites, you would define a rule this way:

http_access deny badsites localnet

184 Chapter 6: Performance Tuning

This way, as soon as Squid determines that badsites does not maich, it will
immediately skip to the next http_access rule.

Some ACLs also require more processing time than others. For example, us-
ing a regex (regular expression) takes longer than matching against a literal
list, since the pattern must be examined more closely. ACLs such as src_do-
main require a host name lookup, and must wait for a DNS response from the
network. In such cases, using a caching DNS server (page 143) can help to
improve your Squid response times. [f you can, avoid regex matches and other
"expensive" ACLs whenever possible. Large access control lists are not gen-
erally a problem as Squid has an efficient way of storing them in memory.
Since Squid can perform a literal search much faster than performing pattern
matching, large lists can actually yield better performance than tiny pattern
matches.

Examples of some commonly used elements and rules are available in Ap-
pendix B on page 269.

Redirectors

Redirectors are typically used to direct Squid to serve content other than what
was requested. Rather than simply denying access to a particular site or object
with an abrupt error message, a redirector can send the user to a more infor-
mative web page or take some other action. Redirectors are often used to
block sites based on content (e.g. games, pornography, or advertisements) or
they can be used to redirect users to a page informing them of network status
or that their access is disabled.

Redirectors are run as an external process, which can significantly increase
processing time and resource consumption on your cache server. You should
therefore make good use of ACLs to delay redirector processing until it is actu-
ally needed. For example, if you are blocking advertisements, you typically
need to check every request for a match. If the redirector is slow, this could
affect the overall performance of your cache. If you move advertisement block-
ing to a later stage (say, after all local and approved web sites are permitted
without filtering), then you can reduce the server load significantly.

There are only a finite number of child processes available to answer all redi-
rector requests. If your redirector takes too long to complete, you could run out
of redirector processes. This happens when requests come in faster than they
can be processed. This will be reflected in your cache.log as "FATAL: Too
many queued redirector requests," and will cause your Squid process to pre-
maturely exit. Make sure you allocate enough children to process your requests
by using the redirect_children directive.

redirect_children 10

Chapter 6: Performance Tuning 185

The default value is 5 children. If you specify too many, you will consume more
system RAM and CPU. This will be reflected in your system monitoring logs
(page 80) or using a spot check tool such as top (page 74).

You can also tell Squid to bypass the redirector should it run out of available
children. This should obviously not be used in access control rules, but could
be appropriate when using redirectors to block advertisements on a very busy
network. This will allow you to use the redirector most of the time, but bypass it
when the network load grows too large. You can enable this with the redi-
rector_bypass directive.

redirector_ bypass on

A good example of a real world redirector is adzapper. Adzapper is a redirector
that will intercept advertising and replace it with smaller static graphic files. This
obviously saves bandwidth, and can help creating a more pleasing,
advertisement-free environment. Adzapper matches each request using a pat-
tern matching approach. If the request is matched, it will replace the request
with a smaller static graphic which is often much smaller than the original, and
is much faster to serve since it comes from the local machine.

A colleague at another university runs adzapper on his Squid servers in an in-
teresting way. He has journalism students who want to see the adverts. In order
to cater to their needs, he runs Squid on two different ports using the
http_port directive. He then has a redirector ACL that will only match against
requests on one of the ports using a myport ACL element. This way most us-
ers see no advertising, but if you connect to Squid on the alternate port you will
get the full, unmodified page.

http port 8080 8082

acl advertport myport 8082
redirector access deny advertport
redirector access allow ALL

Adzapper is available from http://adzapper.sourceforge.net/.

Squidguard is another popular redirector program that is often used in con-
junction with "blacklists" to block categories of sites, for example pornography.
It is a very powerful and flexible script that offers a fine-grained level of access
control. You can download it at http://www.squidguard.org/.

DansGuardian

An alternative to using a redirector to filter content is to use the very popular
DansGuardian program. This program runs on your Squid (or other proxy)
server, and intercepts the requests and responses between the browser and

186 Chapter 6: Performance Tuning

proxy. This allows you to apply very sophisticated filtering techniques to web
requests and responses. DansGuardian is very often used for schools to block
undesirable content, and has the side affect of saving bandwidth.

DansGuardian can be downloaded from http://dansguardian.org/.

Authentication helpers

Authentication introduces accountability to any service, and is a particularly
important part of bandwidth control. By authenticating your Squid users, a
unique identity is assigned to all requests passing through the proxy server.
Should any particular user consume excessive bandwidth or otherwise violate
the network access policy, access can be immediately revoked and the nature
of the problem will be reflected in the system logs. Examples of how to imple-
ment authentication in Squid are provided in the Implementation chapter, on
page 101. More details on how to setup Squid authentication are covered in
the Squid FAQ at http://www.squid-cache.org/Doc/FAQ/FAQ-23.html/ .

In Squid, authentication is not done for every page, but rather it expires after a
specified amount of time. After the TTL expires, the client will again be asked
for authentication. Two critical parameters that affect the performance of basic
authentication are:

auth _param basic children 5

The children parameter tells Squid how many helper processes to use. The
default value is 5, which is a good starting point if you don't know how many
Squid needs to handle the load. If you specify too few, Squid warns you with
messages in cache.log. Specifying more will allow you to accommodate a
higher system load, but will require more resources. Another important pa-
rameter for basic authentication is credentialsttl:

auth_param basic credentialsttl 2 hours

A larger credentialsttl value will reduce the load on the external authenti-
cator processes. A smaller value will decrease the amount of time until Squid
detects changes to the authentication database. Think of this value as the
maximum amount of time a user can continue to use the network before an-
other authentication check is required. Note that this only affects positive re-
sults (i.e., successful validations). Negative results aren't cached by Squid. The
default TTL value is two hours.

If you are using digest authentication, there are three variables to consider:

auth _param digest children 5
auth_param digest nonce garbage_interval 5 minutes
auth_param digest nonce_max duration 30 minutes

Chapter 6: Performance Tuning 187

The children parameter for digest authentication is used the same way as it
is for basic authentication.

The nonce_garbage_interval parameter tells Squid how often to clean up
the nonce cache. The default value is every 5 minutes. A very busy cache with
many Digest authentication clients may benefit from more frequent nonce gar-
bage collection.

The nonce_max_duration parameter specifies how long each nonce value
remains valid. When a client attempts to use a nonce value older than the
specified time, Squid generates a 401 (Unauthorized) response and sends
along a fresh nonce value so the client can re-authenticate. The default value is
30 minutes. Note that any captured Authorisation headers can be used in a
replay attack until the nonce value expires, and using a smaller value will limit
the viability of this kind of attack. Setting the nonce_max_duration too low,
however, causes Squid to generate 401 responses more often. Each 401 re-
sponse essentially wastes the user's time as the client and server renegotiate
their authentication credentials.

Note that if you are utilising a central authentication resource, you should en-
sure that this server can handle all the authentication requests that may be
made of it. If the authentication source is unavailable, then users will not be
able to browse the web at all.

Hierarchical caches

If you run a number of Squid cache servers you may want them to cooperate
with each other. This can help to maximise the amount of cache hits, and
eliminate redundant downloads.

Hierarchies can help when the volume of proxy traffic becomes too high for a
single server to handle. For example, imagine a university that has a 5 Mb
congested Internet connection. They originally ran two independent cache
servers to provide fault tolerance and to split the load. The users were directed
to the cache servers by using a DNS round-robin approach. If a user requested
an object from cache A, and it did not have a cached copy of the object, it
would then be fetched from the original site. The fact that this object may have
existed on server B was never considered. The problem was that Internet
bandwidth was wasted by fetching the object from the origin when it already
existed on the local network.

A better solution would be to create a hierarchy between the two caches. That
way, when a request is received by one of the caches, it would first ask the
other cache if it has a local copy before making a request directly to the original
server. This scenario works because the two servers are on a LAN, and access

188 Chapter 6: Performance Tuning

between the two servers is much faster than making requests from the Internet.
A hierarchical cache configuration is shown in Figure 6.1.

Internet
— —
A
o I —> o
o (-]
— —
o |l | Cache [| | Cache | _ | | &
o % L < > % L o[
G Server #1 Server #2 °
— —
e l— — oH
c__J >

Figure 6.1: Multiple caches can distribute the load on a busy network across multiple
servers, improving efficiency and response times.

One pitfall to watch out for when implementing cache hierarchies is the acci-
dental creation of forwarding loops. Forwarding loops can happen when two
caches consider each other as the parent cache. When cache A requests an
object from cache B, the request is forwarded back to cache A, then to cache
B, and so on, until the cache servers run out of resources. For this reason, it is
critically important that parent caches are never defined in a reciprocal manner.

Squid caches communicate with each other using the Internet Cache Proto-
col (ICP), as defined in RFC2186 and RFC2187. To optimise inter-cache per-
formance and cut down on ICP queries, you should use cache digests. Cache
digests provide a very compact summary of the available objects in a particular
cache, eliminating the need for caches to request individual objects just to de-
termine whether or not they are available from the peer. This can dramatically
speed up communication between your caches. There are no runtime configu-
ration options to tune cache digests; simply compile Squid after passing the —
enable-cache-digests to the configure script, and your cache hierar-
chies will use digests. There is a great deal of technical detail about cache di-
gests in the Squid FAQ at: http://www.squid-cache.org/Doc/FAQ/FAQ-16.html!

Since a hierarchy can improve your hit rate by 5% or more, it can be beneficial
to overutilised and congested Internet links. The golden rule to remember with
hierarchical caches is that your neighbour must be able to provide the data
faster than the origin server for them to be worthwhile.

Chapter 6: Performance Tuning 189

Configuring delay pools

Squid can throttle bandwidth usage to a certain amount through the use of de-
lay pools. Delay pools utilise the Token Bucket Filter (TBF) algorithm to limit
bandwidth to a particular rate while still allowing short full-speed bursts.

Conceptually, delay pools are "pools" of bandwidth that drain out as people
browse the web, and fill up at the rate specified. This can be thought of as a
pot of coffee that is continually being filled. When there is bandwidth available
in the "pot," requests are served at the best possible speed. Once the pot has
emptied, it will only "refill" at a constrained rate as the coffee machine brews
more coffee. To the user, this creates a small amount of fast bursting (for
quickly loading a page or two). As requests continue, this is followed by a pe-
riod of slower access, ensuring fairness and discouraging excessive use. As
the user's requests are reduced, the coffee pot again has a chance to fill at the
specified rate. This can be useful when bandwidth charges are in place, to re-
duce overall bandwidth usage for web traffic while continuing to provide quick
responses to reasonable requests.

The coffee pot is initially 1 MbPS

“filled” with 1 megabit

As the pot “empties”, 64 Kbps

it refills at a specified rate

The pot “refills” when
this rate exceeds the
rate of requests

& & o

Figure 6.2: Bandwidth is available as long as there is "coffee" in the "pot." When the
delay pool is empty, requests are filled at the specified rate.

Delay pools can do wonders when combined with ACLs. This allows us to limit
the bandwidth of certain requests based on any criteria. Delay behaviour is se-
lected by ACLs (page 269). For example, traffic can be prioritised based on
destination, staff vs. student requests, authenticated vs. unauthenticated re-
quests, and so on. Delay pools can be implemented at ISPs to improve the

190 Chapter 6: Performance Tuning

quality of service on a particular network. To enable delay pool support, Squid
needs to be configured with the --enable-delay-pools option.

There are five classes of delay pools as of Squid 3.0:

1. Use one aggregate bucket for all traffic. This allows you to absolutely limit
all traffic to a particular rate across the entire network.

2. One aggregate bucket for all traffic, and 256 additional buckets for all hosts
in the class C network. In addition to setting an absolute rate, you can set
individual rates for each IP address within the same class C network as the
cache server.

3. One aggregate bucket for all traffic, 256 network buckets, and 256 individ-
ual buckets for each network (for a total of 65,536 individual buckets). With
the class 3 delay pool, you have all of the limiting functionality of classes 1
and 2, and you can further limit traffic based on the source network.

4. Everything in the class 3 delay pool, with an additional limit for each user.
This allows you to further limit the data rate based on the unique authenti-
cated username.

5. Requests are grouped according to their tag (when using external authenti-
cation with the external_acl_type feature).

For example, this limits everyone to a global rate of 64 kbps, using a class 1
delay pool:

Replace the network below with your own

acl delay pool 1 acl src 192.168.1.0/255.255.255.0

Define 1 delay pool, class 1

delay pools 1

delay class 1 1

Manage traffic from our network with the delay pool
delay access 1 allow delay _pool 1 _acl

delay access 1 deny all

Lock users to 64kbps

delay parameters 1 8000/8000

The last line specifies the rate at which the bucket is filled, and the maximum
size of the bucket. Sizes are specified in bytes, not bits. In this example, the
fill rate is 8000 bytes (64 000 bits) per second, and the maximum size of the
bucket is also 8000 bytes. This defines a hard rate of 64 kbps with no bursting.

This example uses a class 2 delay pool to limit the overall rate to 128 kbps,
restricting each IP address a maximum of 64 kbps:

Replace the network below with your own
acl delay pool 1 acl src 192.168.1.0/255.255.255.0
Define 1 delay pool, class 2

Chapter 6: Performance Tuning 191

delay pools 1

delay class 1 2

Manage traffic from our network with the delay pool

delay access 1 allow delay _pool 1 _acl

delay access 1 deny all

Lock everyone to 128kbps and each IP to a maximum of 64kbps
delay parameters 1 16000/16000 8000/8000

To use a class 3 delay pool, let's assume that each department or lab uses its
own class-C IP block. This will limit the entire network to a maximum of 512
kbps, each class-C network will be limited to 128 kbps, and each individual IP
address will be limited to a maximum of 64 kbps.

Replace the network below with your own

acl delay pool 1 acl src 192.168.0.0/255.255.0.0

Define 1 delay pool, class 3

delay pools 1

delay class 1 3

Manage traffic from our network with the delay pool
delay_access 1 allow delay_pool_1_acl

delay_ access 1 deny all

Lock everyone to 512kbps, each class-c to 128kbps,
and each IP to 64kbps

delay parameters 1 64000/64000 16000/16000 8000/8000

Finally, this example uses a class 4 delay pool to limit individual authenticated
users to 64 kbps, no matter how many lab machines they are logged into:

Replace the network below with your own

acl delay pool 1 acl src 192.168.0.0/255.255.0.0

Define 1 delay pool, class 4

delay pools 1

delay class 1 4

Manage traffic from our network with the delay pool
delay_access 1 allow delay_pool_1_acl

delay_ access 1 deny all

Lock everyone to 512kbps, each class-c to 128kbps,
each IP to 64kbps, and each user to 64kbps

delay parameters 4 64000/64000 16000/16000 8000/8000 8000/8000

When using multiple delay pools, remember that the user will be placed in the
first delay pool that matches them. If you define a fast ACL for sites that all us-
ers must be able to access quickly, and a slow ACL for everything else, you
should place the delay_access match for the fast pool before that of the slow
pool. Also note the deny all at the and of each delay pool match statement.
This causes Squid to stop searching for a match for that particular pool.

More information

Squid is like other complex software, in that you should understand what you
are doing before implementing it on a live network. It can be very handy to have

192 Chapter 6: Performance Tuning

a test Squid server that you can use to test potential changes before rolling the
changes out on your production network. Change control is also very important
when tuning Squid, as it is very easy to make a simple change that completely
breaks the cache.

Squid is a tremendously powerful piece of software, and it is not possible do
justice to all the different ways that Squid can be configured in this text. For
more in-depth knowledge of Squid, we highly recommend Squid: the Definitive
Guide by Duane Wessels, published by O'Reilly Media. The Squid FAQ
(http://wiki.squid-cache.org/) and Google in general have plenty of Squid ex-
amples that you can use to make Squid perfectly fit your environment.

Monitoring your Squid performance

Squid provides two interfaces for monitoring its operation: SNMP and the cache
manager.

The cachemgr interface is a command line interface that is accessed via the
squidclient program (which ships with Squid). There is also a web-based
interface called cachemgr.cgi that displays the cachemgr interface via a web
page.

The SNMP interface is nice because it is easy to integrate into your existing
system management package, such as Cacti (page 84) or MRTG (page 83).
Squid's SNMP implementation is disabled by default, and must be enabled at
compile time using the --enable-snmp option. Once you have an SNMP-
enabled Squid, you also need to enable SNMP in your squid.conf using an
ACL:

acl snmppublic snmp community public
snmp_access allow snmppublic localhost
snmp_access deny all

Change the "public" community string to something secret. The only drawback
to using SNMP is that it cannot be used to monitor all of the metrics that are
available to the cachemgr interface.

All. SNMP community strings in our examples start with the prefix
enterprises.nlanr.squid.cachePerf. This prefix has been omitted in
these examples for clarity. For example, the full SNMP community string in the
next example is:

enterprises.nlanr.squid.cachePerf.cacheSysPerf.cacheSysPageFaults

For a full list of all available SNMP community strings, see the comprehensive
list at: http://www.squid-cache.org/SNMP/snmpwalk.html

Chapter 6: Performance Tuning 193

Some of the metrics you should monitor include:

- Page Fault Rate. Page faults occur when Squid needs to access data that
has been swapped to disk. This can cause severe performance penalties for
Squid. A high page rate (> 10 per second) may cause Squid to slow consid-
erably.

To monitor the page fault rate with the cachemgr interface:

squidclient mgr:info | grep 'Page faults'
Page faults with physical i/o: 3897

The SNMP community string for tracking page faults is:

.cacheSysPerf.cacheSysPageFaults

« HTTP request rate. This is simply a measure of the total number of HTTP
requests made by clients. If you monitor this number over time, you will have
a good idea of the average load on your Squid cache throughout the day.

squidclient mgr:info | grep 'Number of HTTP requests'

Number of HTTP requests received: 126722
squidclient mgr:info | grep 'Average HTTP requests'
Average HTTP requests per minute since start: 340.4

The SNMP community string is:

.cacheProtoStats.cacheProtoAggregateStats.cacheProtoClientHttpRequests

- HTTP and DNS Service time. These two metrics indicate the amount of
time HTTP and DNS requests take to execute. They are valuable to monitor
as they can indicate network problems beyond the cache server. A reason-
able HTTP service time should be between 100 and 500 ms. If your service
requests rise above this, you should take a look at your network connection
as it may indicate a congested network. High DNS service times may indi-
cate a potential problem with your caching DNS server (page 143) or up-
stream network problems. These times may also rise if the Squid server it-
self is overloaded.

squidclient mgr:5min | grep client_http.all median_svc_time
client _http.all median_svc_time = 0.100203 seconds

squidclient mgr:5min | grep dns.median svc_time
dns.median_svc_time = 0.036745 seconds

Squid can also warn you if the HTTP service time goes over a specified
threshold. It will log the warning to disk, which can notify you immediately if
you are using Nagios (page 88) or another log watching package (page 80).

194 Chapter 6: Performance Tuning

To enable high response time warnings, add this to your squid.conf.
Times are specified in milliseconds.

high response_time warning 700

For SNMP, you can request the average response times in the last 1, 5, or 60
minutes. The relevant community strings are:

.cacheProtoStats.cacheMedianSvcTable.cacheMedianSvcEntry.cacheHttpAllSvcTime. 1
.cacheProtoStats.cacheMedianSvcTable.cacheMedianSvcEntry.cacheHttpAllSvcTime.5
.cacheProtoStats.cacheMedianSvcTable.cacheMedianSvcEntry.cacheHttpAllSvcTime. 60

.cacheProtoStats.cacheMedianSvcTable.cacheMedianSvcEntry.cacheDnsSvcTime. 1
.cacheProtoStats.cacheMedianSvcTable.cacheMedianSvcEntry.cacheDnsSvcTime. 5
.cacheProtoStats.cacheMedianSvcTable.cacheMedianSvcEntry.cacheDnsSvcTime. 60

- Open File Descriptors. A Squid server that runs out of file descriptors will
perform like a sick puppy. If you start running out of file descriptors, you will
need to increase the number of file handles available to Squid.

squidclient mgr:info | grep -i 'file desc'

File descriptor usage for squid:
Maximum number of file descriptors: 8192
Largest file desc currently in use: 815
Number of file desc currently in use: 268
Available number of file descriptors: 7924
Reserved number of file descriptors: 100

On Linux, you may need to increase the overall number of file descriptors
available to the system, as well as the number allowed per process. To in-
crease the total number of available file descriptors on a Linux system, write
the new value to /proc/sys/fs/file-max. For example:

echo 32768 > /proc/sys/fs/file-max

You should add that command to your /etc/rc.d/rc.local (or the
equivalent in /ete/sysctl.conf) to preserve the change across boots. To
increase the number of descriptors available to an individual process, use
ulimit:

ulimit -n 16384

This sets the number of file descriptors for the current process. You can call
this in the initialisation script that runs Squid, just prior to launching the dae-
mon.

The SNMP community string for available file descriptors is:

.cacheSysPerf.cacheCurrentUnusedFDescrCnt

Chapter 6: Performance Tuning 195

- Hit ratio. The hit ratio gives you an idea of the effectiveness of your cache.
A higher the ratio means that more requests are served from the cache rather
than the network.

#squidclient mgr:info | grep 'Request Hit Ratios'
Request Hit Ratios: 5min: 28.4%, 60min: 27.4%

As with HTTP and DNS service response time, you can request the 1 minute,
5 minute, or 60 minute average using the proper SNMP community string:

.cacheProtoStats.cacheMedianSvcTable.cacheMedianSvcEntry.cacheRequestHitRatio.1
.cacheProtoStats.cacheMedianSvcTable.cacheMedianSvcEntry.cacheRequestHitRatio.5
.cacheProtoStats.cacheMedianSvcTable.cacheMedianSvcEntry.cacheRequestHitRatio.60

- CPU Utilisation. While you are likely already monitoring overall CPU utilisa-
tion, it can be useful to know what percentage is being used by Squid. Peri-
ods of constant 100% utilisation may indicate a problem that needs investiga-
tion. The CPU can also become a hardware bottleneck, and constant high
utilisation may mean that you need to optimise your Squid, upgrade your
server, or lighten the load by bringing up another cache box (page 187).

squidclient mgr:5min | grep cpu_ usage
cpu_usage = 1.711396%

The SNMP community string for CPU usage is:
enterprises.nlanr.squid.cachePerf.cacheSysPerf.cacheCpuUsage
Graphing Squid metrics

Since the values can be extracted via SNMP or the cachmgr interface, they can
also be easily graphed. This can show you trends that will help you predict how
your cache will perform in the future.

Connections —— 1day Hit Ratio —— ldav
t

reqssec
Percent

00: oo 0g 07 1200 1800
|- RN = Wl B kejuest O volune

Figure 6.3: The graph on the left shows the number of connections per second to your
Squid cache. The graph on the right shows the cache hit ratio as expressed by
the number of requests (the dark area) and volume (the light line).

196 Chapter 6: Performance Tuning

Examples of how to set up RRDtool to graph your Squid cache can be found at
http://www.squid-cache.org/~wessels/squid-rrd/.

Traffic shaping

Traffic shaping is used to strictly enforce a particular data rate based on some
predefined criteria. Let's say you are controlling your HTTP usage via a Squid
proxy with delay pools, your mail has spam controls, and you enforce usage
quotas for your users through proxy authentication and accounting. One day
while running Ntop (page 76), you notice that there is surprisingly large amount
of traffic on port 22 (SSH). It appears that some users have figured out how to
tunnel their P2P requests via the SSH port. You can't disable SSH access
throughout your entire organisation, and while you could simply disable access
for these users, you would need to repeat the process each time users figure
out a new way to circumvent the firewall.

This is where traffic shaping can be very useful. By using traffic shaping tech-
nigues, you can limit all traffic using port 22 to a low rate, such as 16 Kbps.
This will permit legitimate SSH shell traffic, while limiting the impact that tunnel-
ing and large file transfers have on the network.

Traffic shaping is best using in conjunction with traffic monitoring (page 83) so
that you have a clear idea of how much bandwidth is used by various services
and machines. Before you can decide how to shape your traffic, it is paramount
that you first understand how bandwidth is consumed on your network.

It is important to remember that traffic can only be shaped on transmit, not on
receive. By the time inbound packets have been received, they have already
traversed the network, and delaying their delivery further is usually pointless.

Linux traffic control and QoS tools

Linux has very good tools for managing bandwidth use, which are unfortunately
not well known or widely used. This is probably because the tools to manipulate
them are complex and poorly documented. You may well find BWM tools easier
to use, but we will describe the kernel tools because they are more powerful.

To perform traffic shaping in Linux, you will need the iproute2 package. It is
available from http://linux-net.osdl.org/index.php/lproute2 and is a standard
package in most distributions. This gives you the tc command, which is used
for all traffic control and Quality of Service (QoS) configuration under Linux.
Another useful component is the ipt_CLASSIFY kernel module, which comes
with recent Linux 2.6 kernels. This integrates iptables with traffic control,
allowing you to write neffilter rules that group traffic into certain classes.

Chapter 6: Performance Tuning 197

Every network interface in Linux has a queuing discipline (qdisc) associated
with it. The queuing discipline controls when and how the interface is allowed to
send packets. You can define a queuing discipline on the external network in-
terface of your router in order to control traffic that you send to the Internet.
You can also define a queuing discipline on the internal interface to control traf-
fic that your users receive.

None of these queuing disciplines will help you unless the queue is "owned" by
the firewall itself. For example, if your firewall is connected to an ADSL modem
by Ethernet, then the Ethernet link to the modem is much faster than the ADSL
line itself. Therefore, your firewall can send traffic to the modem at a rate faster
than the modem can send out. The modem will happily queue traffic for you,
but this means that the queue is on the modem and not on the firewall, and
therefore it cannot easily be shaped.

Similarly, your internal LAN is usually much faster than your Internet connec-
tion, and so packets destined for your network will build up on the Internet pro-
vider's router, rather than on the firewall. The way to prevent this is to ensure
that the firewall sends less traffic to the ADSL line than the line's maximum up-
load speed, and less traffic to your LAN than the line's maximum download
speed.

There are two types of queuing discipline: classful and classless. Classful
qgdiscs can have other qdiscs attached to them. They modify the behaviour of
all attached qdiscs. Classless qdiscs cannot have any other qdiscs attached,
and are much simpler.

Various queuing disciplines are available. The simplest is pfifo_fast, which
separates traffic into three priority classes based on the Type Of Service (TOS)
field in the packet header. High priority packets are always dequeued (sent)
first, followed by medium and low. The pfifo_fast qdisc is classless, and the
only thing that can be configured is the mapping between TOS field values and
priority levels. It does not allow you to throttle your traffic in order to take own-
ership of the queue. See page 199 for a more detailed discussion of the TOS
field.

Another useful queuing discipline is the Token Bucket Filter (TBF). This qdisc
is also classless, but it provides a simple way to throttle traffic on a given inter-
face. For example, the following command throttles outbound traffic on the first
Ethernet interface (eth0) to 220 kbps, and limits the maximum latency to 50 ms:

tc gdisc add dev eth0 root tbf rate 220kbit latency 50ms burst 1540

If you want more control over your bandwidth, you will need to use a classful
qdisc such as Hierarchical Token Buckets (HTB). This allows you to place
arbitrary traffic in classes and restrict the amount of bandwidth available to

198 Chapter 6: Performance Tuning

each class. You can also allow classes to borrow unused bandwidth from other
classes. A very simple example is given below. It will throttle outgoing traffic to
50 kbps.

tc gdisc add dev eth0 handle 1 root htb default 10
tc class add dev ethO classid 1:1 htb rate 100kbit ceil 100kbit
tc class add dev eth0 classid 1:10 parent 1:1 htb rate 50kbit ceil 50kbit

To remove the current qdisc setup from an interface and return to the default,
use the following command:

tc gdisc del dev eth0 root

The following example uses the netfilter CLASSIFY module to place HTTP and
SSH traffic into their own classes (1:20 and 1:30 respectively), and places indi-
vidual limits on them. If you have tried another example, delete the root qdisc
before running this one.

tc gdisc add dev eth0 handle 1 root htb default 10

tc class add dev eth0 classid 1:1 htb rate 100kbit ceil 100kbit

tc class add dev eth0 classid 1:10 parent 1:1 htb rate 50kbit ceil 50kbit
tc class add dev eth0 classid 1:20 parent 1:1 htb rate 30kbit ceil 30kbit
tc class add dev eth0 classid 1:30 parent 1:1 htb rate 20kbit ceil 100kbit
iptables -t mangle -F

iptables -t mangle -A OUTPUT -p tcp --sport 80 -j CLASSIFY --set-class 1:20
iptables -t mangle -A OUTPUT -p tcp --sport 22 -j CLASSIFY --set-class 1:30

HHoH oW W K H WK

The above example creates a root class (1:1) which is limited to 100 kbps, and
3 classes underneath (1:10, 1:20 and 1:30), which are guaranteed 50 kbps, 30
kbps and 20 kbps respectively. The first two are also limited to their guaranteed
rates, whereas the third is allowed to borrow unused bandwidth from the other
two classes up to a maximum of 100 kbps.

Two common pitfalls in traffic control are misusing branch nodes and rates. If a
node has any children, then it is a branch node. Nodes without children are
leaf nodes. You may not enqueue traffic for a branch node. That means that a
branch node must not be specified as the default class, nor used in an iptables
CLASSIFY rule.

Because the rate on each node is a guarantee, the rate of a branch node must
be exactly equal to the total rates of all its children (leaf nodes). In the above
example, we could not have specified a rate other than 100 kbps for class 1:1.
Finally, it does not make sense to specify a ceil (maximum bandwidth) for any
class that is greater than the ceil of its parent class.

Chapter 6: Performance Tuning 199

Using SFQ to promote fairness over a 56k modem

If you have a device which has an identical link speed and actual available rate,
such as a normal 56k analogue modem, you may want to use Stochastic
Fairness Queuing (SFQ) to promote fairness. SFQ is a fair queueing algorithm
designed to require fewer calculations than other algorithms while being almost
perfectly fair. SFQ prevents a single TCP session or UDP stream from flooding
your link at the expense of others. Rather than allocating a queue for each
session, it uses an algorithm that divides traffic over a limited number of
queues using a hashing algorithm. This assignment is nearly random, hence
the name "stochastic."

This uses tc to enable SFQ on the device pppO0:
tc gdisc add dev ppp0 root sfq perturb 10

That's all there is to it. Traffic that leaves pppO is how subject to the SFQ algo-
rithm, and individual streams (such as downloads) should not overpower other
streams (such as interactive SSH sessions).

Implementing basic Quality of Service (QoS)

If your physical link is saturated and you wish to implement basic quality of
service to prioritise one type of traffic over another, you can use the PRIO
queueing discipline. A packet's Type Of Service (TOS) bits determine whether
a packet should be prioritised to minimise delay (md), maximise throughput
(mt), maximise reliability (mr), minimise monetary cost (mmc), or some combi-
nation of these. Applications request the appropriate TOS bits when transmit-
ting packets. For example, interactive applications like telnet and ssh may
set the "minimise delay" bits, while file transfer applications like £tp may wish
to "maximise throughput."

When a packet arrives at the router, it is queued into one of three bands, de-
pending on the TOS bits. The first band is tried first, and higher bands are only
used if the lower classes have no packets queued to be sent out. According to
the Linux Advanced Routing & Traffic Control HOWTO, the different combina-
tions of TOS bits result in the following assignment of bands. All of the possible
combinations of TOS bits are enumerated in the table on the next page.

200 Chapter 6: Performance Tuning

Service requested Linux priority Band
Normal Best Effort 1
Minimise Monetary Cost Filler 2
Maximise Reliability Best Effort 1
MMC + MR Best Effort 1
Maximise Throughput Bulk 2
MMC + MT Bulk 2
MR + MT Bulk 2
MMC + MR + MT Bulk 2
Minimise Delay Interactive 0
MMC + MD Interactive 0
MR + MD Interactive 0
MMC + MR + MD Interactive 0
MT + MD Interactive Bulk 1
MMC + MT + MD Interactive Bulk 1
MR + MT + MD Interactive Bulk 1
MMC + MR + MT + MD Interactive Bulk 1

The PRIO qdisc doesn't actually shape traffic to match a particular rate. It sim-
ply assigns priority to different types of traffic as it leaves the router. Therefore
it only makes sense to use it on a fully saturated link where granting priority to
certain kinds of traffic makes sense. On an unsaturated link, PRIO will have no

discernible performance impact.

To implement basic QoS with fairness, we can use a combination of PRIO and

SFQ.

tc gdisc add dev eth0 root handle 1: prio

tc gdisc add dev eth0 parent 1:1 handle 10:
tc gdisc add dev eth0 parent 1:2 handle 20:
tc gdisc add dev eth0 parent 1:3 handle 30:

sfq
sfq
sfq

Chapter 6: Performance Tuning 201

This creates the following priority decision tree:

Band
10: (sfq) 20: (sfq) 30: (sfq) | qdiscs
Y ' '
1:1 1:2 1:3 Classes
Root qdisc

ﬂ Outbound traffic

Figure 6.4: The priority decision tree used by PRIO. Note that while this example uses
SFQ for each band, you could use a different qdisc (such as HTB) for every band.

Traffic for band 0 gets queued into gdisc 10:, band 1 traffic is sent to gdisc 20:,
and band 2 traffic is sent to qdisc 30:. Each qdisc is released according to the
SFQ algorithm, with lower numbered qdiscs taking priority.

Class Based Queueing (CBQ)

Another popular queueing discipline is Class Based Queueing (CBQ). CBQ is
similar to the PRIO queue in that lower priority classes are polled after higher
ones have been processed. While CBQ is likely the most widely known queue-
ing algorithm, it is also one of the most complex and least accurate. But it can
work well in many circumstances. Remember that it's a good idea to bench-
mark your network performance (page 89) after making changes to your traffic
shaping configuration to be sure that the shaper is working as you intend.

Let's assume that we have a server connected to a 2 Mbps link. We want to
give web and mail a combined 1.5 Mbps of bandwidth, but not allow web traffic
to exceed 1 Mbps and not allow mail to exceed 750 Kbps.

Setup CBQ on the interface
tc gdisc add dev eth0 root handle 1:0 cbg bandwidth 100Mbit avpkt 1000 cell 8
Lock us down to 1Mbit
tc class add dev eth0 parent 1:0 classid 1:1 cbg bandwidth 100Mbit \
rate 1.5Mbit weight 150Kbit prio 8 allot 1514 cell 8 \
maxburst 20 avpkt 1000 bounded

202 Chapter 6: Performance Tuning

Create a class for our web traffic
tc class add dev eth0 parent 1:1 classid 1:3 cbg bandwidth 100Mbit \
rate 1Mbit weight 100Kbit prio 5 allot 1514 cell 8 maxburst 20 avpkt 1000
Create a class for our mail traffic
tc class add dev eth0 parent 1:1 classid 1:4 cbg bandwidth 100Mbit \
rate 750Kbit weight 75Kbit prio 5 allot 1514 cell 8 maxburst 20 avpkt 1000
Add SFQ for fairness
tc gdisc add dev eth0 parent 1:3 handle 30: sfqg
tc gdisc add dev eth0 parent 1:4 handle 40: sfqg
Classify the traffic
tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip sport 80 \
Oxffff flowid 1:3
tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip sport 25 \
Oxffff flowid 1:4

For more details about this complex qdisc, see the Linux Advanced Routing
and Traffic Control HOWTO at http://lartc.org/lartc.html .

WonderShaper

WonderShaper (http://lartc.org/wondershaper/) is a relatively simple shell
script that attempts to achieve the following:

» Maintain low latency for interactive traffic
- Allow web browsing at reasonable speeds while uploading or downloading

- Make sure uploads don't impact downloads, and vice-versa

The WonderShaper script can use the CBQ or HTB packet schedulers, and is
configured by simply setting some variables at the top of the script. While it is
intended for use with residential DSL networks, it provides a good example of
CBQ and HTB queueing that can be used as the starting point for a more com-
plex traffic shaping implementation.

BWM Tools

BWM Tools (http://freshmeat.net/projects/bwmtools) is a full firewall, shaping,
monitoring, logging, and graphing package. It is implemented using userspace
utilities, so any Linux kernel that supports the iptables -j QUEUE target will
work. Shaping of traffic is easily accomplished by defining classes and creating
flows.

The configuration file for BWM Tools is defined in XML format. A Class for
SMTP traffic can be defined as follows:

<class name="smtp_traffic">
<address name="inbound" dst="192.168.1.1" proto="tcp" dst-port="25">
<address name="outbound" src="192.168.1.1" proto="tcp" src-port="25">
</class>

Chapter 6: Performance Tuning 203

Change 192.168.1.1 to match your external IP address. To shape the traffic to
allow an absolute 128 kbps inbound and 64 kbps outbound, use this:

<traffic>
<flow name="smtp_inbound" max-rate="16384">
inbound;
</flow>
<flow name="smtp_outbound" max-rate="8192">
outbound;
</flow>
</traffic>

Note that rates are specified in bytes per second, so you should multiply the
rate by 8 to get the bits per second.

Traffic shaping with BSD

Packet Filter (PF) is the system for configuring packet filtering, network ad-
dress translation, and packet shaping in FreeBSD and OpenBSD. PF uses the
Alternate Queuing (ALTQ) packet scheduler to shape traffic. PF is available
on FreeBSD in the basic install, but without queueing/shaping ability. To enable
queueing, you must first activate ALTQ in the kernel. This is an example of how
to do so on FreeBSD.

cd /usr/src/sys/i386/conf
cp GENERIC MYSHAPER

Now open MYSHAPER file with your favourite editor and add the following at the
bottom of the file:

device pf
device pflog
device pfsync

options ALTQ

options ALTQ_CBQ # Class Bases Queuing (CBQ)

options ALTQ RED # Random Early Detection (RED)

options ALTQ RIO # RED In/Out

options ALTQ HFSC # Hierarchical Packet Scheduler (HFSC)
options ALTQ PRIQ # Priority Queuing (PRIQ)

options ALTQ NOPCC # Required for Multi Processors

Save the file and recompile the kernel by using the following commands:

/usr/sbin/config MYSHAPER
cd ../compile/MYSHAPER
make cleandepend

make depend

make

make install

HHH W R H W

204 Chapter 6: Performance Tuning

Ensure PF is activated on boot. Edit your /etc/rc.conf and add this:

gateway enable="YES"
pf_enable="YES"
pf_rules="/etc/pf.conf"

pf flags=""

pflog _enable="YES"
pflog_logfile="/var/log/pflog"
pflog flags=""

PF with ALTQ is now installed.

An example of how to rate limit SMTP traffic to 256 Kbps and HTTP traffic to
512 Kbps is shown below. First, create the file /ete/pf.conf and begin by
identifying the interfaces. PF supports macros, so you don't have to keep re-
peating yourself.

#The interfaces
gateway if = "vr0"
lan_if "vrl"

You should replace vrO and vr1 with your network interface card names. Next,
identify the ports by using Macros:

mail port = "{ 25, 465 }"
ftp port = "{ 20, 21 }"
http port = "80"

Identify the host or hosts:

mailsrv = "192.168.16.1"
proxysrv = "192.168.16.2"
all hosts = "{" $mailsrv $proxysrv "}"

If you have several IP address blocks, a table will be more convenient. Checks
on a table are also faster.

table <labA> persist { 192.168.16.0/24 }
table <labB> persist { 10.176.203.0/24 }

Now that your interfaces, ports, and hosts are defined, it's time to begin shap-
ing traffic. The first step is to identify how much bandwidth we have at our dis-
posal (in this case, 768 Kbps). We wish to limit mail to 256 Kbps and web traffic
to 512 Kbps. ALTQ supports Class Based Queueing (CBQ) and Priority
Queueing (PRIQ).

Class Based Queueing is best used when you want to define several bucket
queues within primary queues. For example, suppose you have Labs A, B, and
C on different subnets, and you want each individual lab to have different

Chapter 6: Performance Tuning 205

bandwidth allocations for mail and web traffic. Lab A should receive the lion's
share of the bandwidth, then Lab B, and Lab C should receive the least.

Priority Queuing is more suitable when you want certain ports or a range of IPs
to have priority, for example when you want to offer QoS. It works by assigning
multiple queues to a network interface based on protocol, port, or IP address,
with each queue being given a unique priority level. The queue with the highest
priority number (from 7 to 1) is always processed ahead of a queue with a
lower priority number. In this example. we will use CBQ.

Use your favourite editor to edit the file /etc/pf.conf and add the following
at the bottom:

altg on $ gateway_if bandwidth 768Kb cbg queue { http, mail }
queue http bandwidth 512Kb cbg (borrow)
queue mail bandwidth 256Kb

The borrow keyword means that HTTP can "borrow" bandwidth from the mail
queue if that queue is not fully utilised.

You can then shape the outbound traffic like this:

pass in quick on lo0 all
pass out quick on lo0 all

pass out on $gateway_ if proto { tcp, udp } from $proxysrv to any \
port http keep state queue http

pass out on $gateway if proto { tcp, udp } from $mailsrv to any \
port smtp keep state queue mail

block out on $gateway if all

pass in on $gateway if proto { tcp, udp } from any to $mailsrv \

port smtp keep state
pass in on $gateway if proto { tcp, udp } from any to $proxysrv \

keep state
pass in on $lan_if proto { tcp, udp }from $mailsrv to any keep state
pass in on $lan if proto { tcp, udp } from $proxysrv to any keep state
block in on $lan_if all

Farside colocation

Under many circumstances, you can save money and improve Internet speeds
by moving public-facing services into a colocation facility. This service can
be provided by your ISP or a third party hosting service. By moving your public
servers out of your organisation and into a facility closer to the backbone, you
can reduce the load on your local connection while improving response times.

206 Chapter 6: Performance Tuning

Web
Server

VSAT

Internet Local

Network

VSAT

000

o o
o o
o o

Internet clients
Figure 6.5: Colocation can remove load from your local Internet connection.

Colocation (often simply referred to as colo) works very will with services such
as:

- Web servers. If your public web servers require high bandwidth, colocation
makes a lot of sense. Bandwidth in some countries is extremely cheap and
affordable. If you have a lot of visitors to your site, choosing to host it "off-
shore" or "off-site" will save you time, money, and bandwidth. Hosting serv-
ices in Europe and the United States are a fraction of the cost of equivalent
bandwidth in Africa.

- Public / backup DNS servers. DNS allows you to create redundant servers
in an effort to increase service reliability. If your primary and secondary serv-
ers are hosted at the same physical location, and the network connectivity to
that location goes down, your domains will effectively "fall off the Internet."
Using colocation to host DNS gives you redundant name service with very
little chance of both DNS servers being down at the same time. This is espe-
cially important if you're doing a lot of web hosting or if people are paying you
for a hosting service, as a loss of DNS service means that all of your cus-
tomer's services will be unreachable.

Installing a public DNS server at a colo can also help improve performance,
even on an unsaturated line. If your organisation uses a VSAT or other high
latency connection, and your only DNS server is hosted locally, then Internet
requests for your domain will take a very long time to complete.

Chapter 6: Performance Tuning 207

DNS % % Local
Server network

Round-rip time for DNS requests: several seconds

DNS Local
Server network

DNS traffic from the Internet may saturate the VSAT

DNS % % DNS | [Local
Server Server network

DNS responses are cached,
and Internet DNS requests do not flood the VSAT

Figure 6.6: Inefficient DNS configuration can cause unnecessary delays and wasted
bandwidth.

If you use private IP addressing internally (i.e., you are using NAT) then your
DNS server will need to send different responses depending on where the
requests come from. This is called split horizon DNS, and is covered on
page 212.

Email. By combining anti-virus and anti-spam measures at a colo server,
you can drastically reduce bandwidth wasted on undesired content. This
technique is sometimes called far-side scrubbing. If you rely on client-side
virus scanners and spam filters, the filtering can only occur after the entire
mail has been received. This means that you have needlessly downloaded
the entire message before it can be classified as spam and discarded. Often
times, 80% or more of all inbound mail in a normal educational setting can be
spam and virus content, so saving this bandwidth is vital.

To implement far-side scrubbing, you should set up an anti-virus and anti-
spam solution as discussed in chapter four: Implementation, and host that
server at a colocation facility. You should also install a simple internal email
server, with firewall rules in place that only allow connections from the colo.
After mail has been filtered at the colo, the remote email server should for-
ward all mail to the internal server. This server can then simply deliver the
mail without further filtering.

208 Chapter 6: Performance Tuning

Choosing a colo or ISP

When shopping for an ISP or colocation facility, do not overlook the details of
the Service Level Agreement (SLA). This document describes the precise
level of service that will be provided, including technical support, minimum up-
time statistics, emergency contact procedures, and liability for unforeseen serv-
ice outages. Remember that a promise of 99.99% uptime means that an ISP
can be down for about seven hours per month before their SLA is violated.
Keep this in mind, as it can and most probably will happen at least once as
every colo provider experiences denial of service attacks, hardware failure, and
simple human errors. While it's almost certain that your service will get inter-
rupted eventually, the SLA will determine what course of action is available to
you when it does.

You should also pay attention to the technical specifications of a potential data
centre. Do they have backup power? Is the facility well ventilated? Do they
have a multi-homed Internet connection with enough capacity to meet your
needs as well as the needs of the rest of their customers? Do they use trusted
equipment and professional installations, or is the data centre a haphazard
tangle of wires and hardware? Take a tour of the facility and be sure you are
comfortable with the organisation before making an agreement.

Billing considerations

Flat rate billing is when you're allocated a certain amount bandwidth, and are
capped at this rate. For instance you may be allocated 1.5 Mbps of inbound
and outbound bandwidth. You can use up to this amount for as long as you
want with no fear of being billed extra at the end of the month. The only draw-
back to this is if you wish to have the ability to burst, using more than the allo-
cated 1.5 Mbps during busy times.

The 95th percentile method allows for bursting. Bandwidth rates are polled
every 5 minutes. At the end of the month, the top 95% spikes are removed and
the maximum value is taken as the billed rate for the entire month. This
method can lead to unexpectedly large bandwidth bills. For example, if you
use 10 Mbps for 36 hours straight, and you use less than 1 Mbps for the rest of
the month, you will be billed as if you used 10 Mbps for the entire month. The
advantage of this method is that you can occasionally burst to serve much
more traffic than normal, without being billed for the bursts. As long as your
peak times fall in the top 5% of overall traffic, your bill will not increase.

You may also be billed by actual usage, also known as by-the-bit. ISPs may
choose to bill you for every byte of traffic you transmit and receive, although
this isn't commonly done for colo hosting. Actual usage billing is normally asso-
ciated with a dedicated connection, such as a 100 Mbit or 1 Gbit line.

Chapter 6: Performance Tuning 209

Protocol tuning

Most times, the default TCP parameters provide a good balance between per-
formance and reliability. But sometimes it is necessary to tune TCP itself in
order to achieve optimal performance. This is particularly important when using
high latency, high throughput networks such as VSAT. You can drastically im-
prove performance on such a link by eliminating unnecessary acknowledg-
ments.

TCP window sizes

The TCP window size determines the size of a chunk of data that is sent be-
fore an ACK packet is returned from the receiving side. For instance, a window
size of 3000 would mean that two packets of 1500 bytes each will be sent, after
which the receiving end will ACK the chunk or request retransmission (and re-
duce the window size at the same time).

Large window sizes can speed up high-throughput networks, such as VSAT.
For example, a 60 000 byte window size would allow the entire chunk to be
sent to the receiving end before an ACK reply is required. Since satellite
bandwidth has such high latency (about 1 second in Africa), using a small win-
dow size greatly reduces the available throughput. The standard window size
of 1500 would require an ACK for each packet to be sent, introducing an addi-
tional 1 second of latency per packet. In this case, your available throughput
would be roughly 1-2 Kbps maximum, even though the available bandwidth of
the VSAT is much higher.

The TCP window size and other TCP tuning parameters can be easily adjusted
in Linux and BSD.

Linux

RFC1323 defines two important high performance TCP extensions. It provides
the TCP "Window Scale" option to permit window sizes of greater than 64 Kb.
This will enable window scale support in Linux:

echo "1" > /proc/sys/net/ipv4/tcp_window_scaling

RFC1323 also establishes a mechanism for improving round trip time (RTT)
calculations through the use of timestamps. A more accurate RTT means that
TCP will be better able to react to changing network condition. This command
enables timestamp support:

echo "1" > /proc/sys/net/ipvé4/tcp_timestamps

210 Chapter 6: Performance Tuning

To set the maximum size of the TCP receive and transmit windows respec-
tively:

echo [size] > /proc/sys/net/core/rmem max
echo [size] > /proc/sys/net/core/wmem max

You can also adjust the default size of TCP receive and transmit windows:

echo [size] > /proc/sys/net/core/rmem default
echo [size] > /proc/sys/net/core/wmem_ default

As the available bandwidth increases, the transmit queue should also be in-
creased. This is particularly important on very high bandwidth connections.
The length of transmit queue can be set with ifconfig:

ifconfig eth0 txqueuelen [size]

FreeBSD

You can activate window scaling and timestamp options (as per RFC1323) with
a single command in FreeBSD:

sysctl net.inet.tcp.rfcl323=1

To set the maximum TCP window size:

sysctl ipc.maxsockbuf=[size]

The default size of the TCP receive and transmit windows are set like this:

sysctl net.inet.tcp.recvspace=[size]
sysctl net.inet.tcp.sendspace=[size]

For more information about TCP window size and other protocol tuning, see:

- http://proj.sunet.se/E2E/tcptune.htm!
- http://www.psc.edu/networking/projects/tcptune/

- http://www.hep.ucl.ac.uk/~ytl/tcpip/linux/txqueuelen/

Link aggregation

By combining two or more network connections into a single logical connection,
you can increase your throughput and add a layer of redundancy to your net-
work. There are two mechanisms available to aggregate network links in Linux:
via the bonding driver, and using routing.

Chapter 6: Performance Tuning 211

Bonding

Bonding is one method for combining the throughput of two or more network
connections. When using bonding, two or more physical interfaces are com-
bined to create one virtual interface capable of the combined throughput. Bond-
ing requires both sides of the connection to support the technology.

Let's assume we have two hosts that each have two 100 Mbit interfaces, ethO
and eth1. By bonding these two interfaces together, we can create a logical
device (bond0) that provides a 200 Mbit link between the two hosts.

Run the following on both hosts.

Make sure the bonding driver is loaded

modprobe bonding

Set our IP, .10 for the first host, .11 for the second
ip addr add 192.168.100.10/24 brd + dev bond0

Bring the interface up

ip link set dev bond0 up

Add our slave interfaces

ifenslave bond0 ethO ethl

If you use bonding, you should connect the bonded machines via cross-over
cables, or use a switch that supports port trunking. Since both physical devices
will use the same hardware (MAC) address, this can confuse conventional
switches. For more information about bonding, see:

« http://linux-net.osdl.org/index.php/Bonding

« http://linux-ip.net/html/ether-bonding.htm|

Aggregate routing

You can also aggregate links by using routing alone. You can either use all
links in a round-robin fashion (called equal cost routing), or you can fail over
to a second connection when the first becomes saturated. The first option is
appropriate when the monetary cost of both links is equal. The second allows
you to use a less inexpensive link for most of your traffic, and only fail over to
the more expensive connection when the demand is high.

To perform equal cost routing between eth1 and eth2:
ip route add default dev ethl nexthop eth2
To only use eth2 when the traffic on eth1 saturates the link:

ip route add default dev ethl weight 1 nexthop eth2 weight 2

212 Chapter 6: Performance Tuning

For more examples of how and when to use aggregate routing, see the Linux
Advanced Routing & Traffic Control HOWTO at http://lartc.org/lartc.html .

DNS optimisation

Optimising a DNS cache will provide users with fast resolution of DNS queries,
thus providing fast initial "startup" times for connections. Faster DNS response
times make everything else on the network seem to "go faster."

Without memory restrictions, a DNS cache can run wild and use whatever
memory is available. For example, a misconfigured BIND installation can eas-
ily eat up 4 GB of RAM when operating as a DNS cache server for a small ISP.
To limit RAM consumption on BIND, add a max-cache-size option to your
options section:

options {
max-cache-size 16M;

}

DJBDNS uses 1 MB of memory for its cache by default, which may be a bit
small for some installations. This will change the cache size to 16 MB:

echo 16000000 > /service/dnscache/env/CACHESIZE
echo 16777216 > /service/dnscache/env/DATALIMIT
svc -t /service/dnscache

It can be difficult to find the best location for hosting your public web server. If
you host it on the local LAN, then local users will be able to access it very
quickly, but connections from the public Internet will consume your bandwidth.
If you host it at a colocation facility (as mentioned on page 205), then the
Internet at large will be able to access it very quickly, but local users (for exam-
ple, students, and faculty) will need to use the Internet connection to access it.

One approach to this problem is to use a combination of mirroring (page 144)
and split horizon DNS. You can mirror the contents of the web server and
have a local copy as well as a public copy hosted at a colo. You can then con-
figure your DNS server to return the IP address of the internal server when it is
requested from the local LAN, and otherwise return the IP address at the colo.

In this example, hosts with a source IP address of 192.168.0.0/24 are given
private responses to DNS queries, while all other addresses are given public
responses.

acl internal {
192.168.0.0/24;

}

Chapter 6: Performance Tuning 213

view "internal" {
match-clients {
localhost;
internal;
}i

recursion yes;

zone "." {
type hint;
file "caching/root.cache";

}i

zone "companynet" in {
type master;
file "master/companynet-private";

}i

zone "0.168.192.in-addr.arpa" {
type master;
file "master/0.168.192.in-addr.arpa";
}i
}i

view "public" {
recursion yes;

zone "." {
type hint;
file "caching/root.cache";

}i

zone "companynet" in {
type master;
file "master/companynet-public";
}i
}i

This configuration will direct traffic to the most appropriate server.

You can use split horizon in any situation where clients should be redirected
based on their source IP address. For example, you may wish to direct email
clients to an internal email server when they are physically at the office, but to a
different server when travelling. By assigning a different view for your mail host
(one pointing at an internal IP address, the other pointing at a public IP) your
users' email will continue to work without the need to change settings while
travelling. A network using split horizon DNS is shown in Figure 6.7.

214 Chapter 6: Performance Tuning

www.example.com
— is 192.0.2.5
------- : se-mm----m------ DNS
nternet

s Server
Where is
www.example.com?@ Web Server
Web Server 10.1.1.3
192.0.2.5

www. example.com

is 10.1.1.3
Internet i =] DNS
: Server
S R Web Server
Web Server - 10.1.1.3
192.0.2.5 Where is
www.example.com?

Figure 6.7: Split horizon directs users to the appropriate server depending on their
source IP address.

Web access via email

While Internet continues to quickly expand, there remains a large community of
users who only have access to e-mail. This can be because Internet service
providers do not offer full Internet connections (due to inadequate infrastructure
and low-bandwidth lines) or because the users simply cannot afford to pay for
full Internet capabilities. Many of these users live in remote areas of developing
countries and rely on e-mail not only for interpersonal communication, but also
to access essential medical, business, and news information.

Despite the lack of broad and unlimited access to Internet in remote areas,
there is still a plethora of creative and diverse content that scientists, artists,
and people in general can share over, and retrieve from the net. Indeed, an
important lesson learnt in recent years is that high-bandwidth access to the
Internet is not essential for bridging the digital divide. To some extent, the ex-
change and transfer of knowledge and technology is possible using only e-mail
(to retrieve general content Web pages) or Web-to-email gateways (to retrieve
edournals).

Some of these facilities, which mostly available for free, are discussed in this
section. It is possible to access nearly any site on the Internet through e-mail.

There exists a moderated mailing list called ACCMAIL as a forum for communi-
cating news, comments, and questions about e-mail only methods of accessing

Chapter 6: Performance Tuning 215

the Internet. To contribute to the discussion, e-mail to
accmail@listserv.aol.com and to subscribe, send an e-mail to
listserv@listserv.aol.com with SUBSCRIBE ACCMAIL as the message body.

www4mail

This is an open source application that allows you to browse and search the
whole Web via e-mail by using any standard Web browser and any MIME (Mul-
tipurpose Internet Mail Exchange) aware e-mail program. E-mail messages
sent to www4mail servers get automatically passed to the e-mail agent after
selecting one or more buttons that link to other Web documents within a re-
quested Web page. There are many options available, including user quotas, e-
mail uuencoding reply, etc. All of these are described in the www4mail users'
manual available at http://www.www4mail.org/.

By default, www4mail servers deliver web pages as attached HTML without
including any images. In this way, returned e-mails are smaller, arrive faster,
download quicker, and take up less space in an e-mail box. It is also possible
to retrieve images via e-mail. Further information on the use of www4mail can
be retrieved by sending an e-mail To: www4mail@wm.ictp.trieste.it and writing
in the body of the message: "help" (without quotes).

To request the homepage of the International Centre for Theoretical Physics in
Trieste, ltaly, you would send an e-mail To: www4mail@wm.ictp.trieste.it and
simply write in your e-mail message: www.ictp.it (without leading spaces). You
should receive a reply in a few minutes, depending on Internet traffic.

Long URLs in the message body should be wrapped by using a backslash "\"
without quotes. For example, the url:

http://cdsagenda5.ictp.it/full_display.php?smr=0&ida=a05228
...can be wrapped into:

http://cdsagenda5.ictp.it/full_display.php\
?smr=0&ida=a05228

To search in Yahoo for "peanuts" using www4mail, simply send another e-mail
with the message: search yahoo peanuts.

web2mail

Just send an email to: www@web2mail.com with the web address (URL) of the
web page you want as the Subject: of your email message. Another available
web2mail e-mail addresses is: web2mail@connectweb.de .

216 Chapter 6: Performance Tuning

PageGetter.com

Send an e-mail, including one or more URLs in the subject or body of your
message, to web@PageGetter.com . You will automatically receive the full re-
quested web page, complete with embedded graphics. Web pages with frames
will be split into multiple e-mails, as many e-mail clients can not support frames.
But if your e-mail client supports frames (i.e., Outlook Express) you can receive
all frames in a single e-mail. In this case send the e-mail to
frames@PageGetter.com. To receive a text-only version of the requested page,
write instead to: text@PageGetter.com . This is especially useful for Personal
Digital Assistants (PDAs), cell phones, and text only e-mail systems. You can
also send an e-mail to: HTML@PageGetter.com to receive the full HTML page
with no graphics.

GetWeb

GetWeb is another useful web to e-mail automatic service run by the Health-
Net organisation . Send an e-mail To: getweb@healthnet.org with these three
lines in the message body:

. begin
. help
. end

You will receive a reply with further instructions. If your mail software automati-
cally inserts text (such as a signature) at the beginning or end of your message,
an error will occur. To prevent this, GetWeb requires you to enclose retrieval
commands in a "begin" and "end" block as shown above. The GetWeb server
ignores any text that appears before or after this block.

To retrieve a particular website like "www.ictp.it" use the command get:

. begin
. get http://www.ictp.it
. end

For searching the words "malaria" and "Africa" with GetWeb use instead the
strings:

. begin

. search yahoo malaria and Africa
. end

Time Equals Knowledge (TEK)

TEK is an open source web-to-email client that uses email as a transport
mechanism for displaying web pages. It empowers low-connectivity communi-

Chapter 6: Performance Tuning 217

ties by providing a full Internet experience, including web searching, caching,
and indexing. Rather than viewing the web with an email client, users run TEK
from within a normal web browser. The TEK distribution includes a customised
version of Firefox that is pre-configured to talk to TEK rather than make re-
quests directly from the Internet. It is also straightforward to configure other
web browsers to talk to TEK.

TEK clients connect to a proxy server hosted at MIT that provides simplification
and compression of pages, conversion of PS and PDF to HTML, and an inter-
face to Google. The TEK client is released under the GNU GPL, and is free to
download from http://tek.sourceforge.net/

Other useful web-to-email applications

Using GetWeb, the HealthNet SATELLIFE (www.healthnet.org) has pilot pro-
jects aimed at expanding access to health and medical information and sup-
porting data collection and analysis through the use of handheld computers
(PDAs) connected via the local GSM cellular telephone network in African re-
gions.

The eJDS -free electronic Journal Delivery Service (www.ejds.org) is an appli-
cation of www4mail geared to facilitate the access to current scientific literature
free of cost in the fields of Physics and Mathematics. The goal is to distribute
individual scientific articles via e-mail to scientists in institutions in developing
countries who do not have access to sufficient bandwidth to download material
from the Internet in a timely manner. Providing scientists with current literature
supports their ongoing research and puts them with their peers in industrialised
countries.

loband.org

A useful service offered by AidWorld that simplifies web pages in order to make
them download faster over slow Internet connections is available at:
http://www.loband.org/.

To use the service, simply type the web address of the page you want to visit
into a web form and click the "Go" button. Once you start browsing through lo-
band, the simplified page will contain the same text information as the original
website and the formatting of the simplified page will be as similar to the origi-
nal as possible, with colours and images removed.

Images contained in the original page are replaced by links containing an "i" in
square brackets, e.g. [i-MainMap] or [i]. In either case, the original image can
be viewed by clicking the link.

218 Chapter 6: Performance Tuning

High Frequency (HF) networks

HF (High-Frequency) data communications enable radio transmission of data
over a range of hundreds of miles.

HF radio waves reflect off the ionosphere to follow the curvature of the earth.
The great advantage of HF is it can go the distance, leaping over obstacles in
its path. Where HF wins the wireless game in range, but it loses in data capac-
ity. Typical HF radio modems yield about 2400 bps. Two-way radio is the clas-
sic half-duplex medium of communication, so you are either transmitting or re-
ceiving, but not both at the same time. This, plus the robust error-checking pro-
tocols implemented by the modem hardware itself, means the actual link expe-
rience is on the order of 300 bps. It is not possible to use HF data communica-
tions for on-line browsing, chat, or video-conferencing. But HF is a workable
solution for very remote places when using classic store-and-forward applica-
tions like text-based e-mail. One simply needs to pay close attention to the
configuration and try to optimise as much as possible.

A basic HF data communications system consists of a computer, a modem, and
a transceiver with an antenna. Modems used for HF radio vary in throughput
and modulation technique, and are normally selected to match the capabilities
of the radio equipment in use. At HF frequencies, Bell 103 modulation is used,
at a rate of 300 bit/s.

Two distinct error and flow control schemes may be simultaneously used in HF
networks. One is the Transport Control Protocol (TCP) which provides reliable
packet delivery with flow and congestion control. The other is a radio link
Automatic Repeat Request (ARQ) protocol which provides radio link layer
frame error recovery.

The adaptive mechanisms in TCP are not optimum for HF networks, where link
error rates are both higher and burstier than in the wired Internet. TCP has
been designed under the assumption that packet losses are caused almost
exclusively by network congestion, so TCP uses congestion avoidance mecha-
nisms incorporating rate reduction and multiplicative increase of the retrans-
mission timeout.

Application protocols (e.g., HTTP, FTP, and SMTP) may exchange many short
commands and responses before each large file transfer (web page, file, or
email message). In the course of transferring a single email message, an
SMTP client will send at least four short SMTP commands and receive a similar
number of short replies from the SMTP server. This high ratio of short to long
messages is an important characteristic of Internet applications for the designer
of a suitable wireless ARQ protocol.

Chapter 6: Performance Tuning 219

The clients of a HF wireless ARQ protocol (e.g., IP) call upon the ARQ entity to
deliver data reliably over a link. Just as for TCP, reliability is achieved by re-
transmissions. A typical sequence of events is a link setup handshake, followed
by cycles of alternating data transmissions and acknowledgments from the des-
tination. Each such cycle requires that the roles of physical transmitter and re-
ceiver be reversed twice. During each link turnaround some delay is intro-
duced. This added cost for link turnarounds is a characteristic of wireless links,
especially for HF radio links whose turnaround times range up to tens of sec-
onds. However, the timeouts and other behaviour of a HF wireless ARQ proto-
col can be matched to known characteristics of a specific wireless channel for
more efficient operation.

For more information about HF networks, see:

- NB6Z's Digital Ham Radio page, http://home.teleport.com/~nb6z/about.htm
« Introduction to Packet Radio, http://www.choisser.com/packet/

- Das Packet Radio Portal (German), http://www.packetzone.de/

Modem optimisation

If your only connection to the Internet is a 56k modem, there are a few things
you can do to make the best possible use of the available bandwidth. As men-
tioned on page 199, using SFQ with PRIO can help ensure that traffic is han-
dled fairly on a congested link. Many of the other techniques in this book (such
as using good caching software and doing far-side scrubbing) can help to en-
sure that the line is only used when it is absolutely needed. If you are using a
dedicated modem connection, you will want to evaluate the performance when
using various forms of compression.

Hardware compression

Standards such as V.42bis, V.44 and MNP5 are hardware compression tech-
niques that are implemented in the modem itself. Under some circumstances,
using hardware compression can significantly improve throughput. Note that
the modems on both sides of the link must support the compression used.

« V.42bis is an adaptive data compression developed by British Telecom. The
v.42bis algorithm continually estimates the compressibility of the data being
sent, and whenever compression is not possible, it switches to a "transparent
mode" and sends the data without compression. Files that have already
been compressed (such as file archives or MP3 files) do not compress well,
and would be sent without further processing. To enable V.42bis, use this
modem string: AT%C2

220 Chapter 6: Performance Tuning

- V.44 is a data compression standard incorporated into the v.92 dial-up mo-
dem standard. V.44 can provide significantly better compression than
V.42bis. V.44 was developed by Hughes Electronics to reduce bandwidth
consumption on its DirecPC and VSAT products. Hughes released the V.44
algorithm in 1999, and it has been widely implemented as an alternative to
V.42bis. To enable V.44, use this modem string: AT+DS44=3,0

« MNPS5 is short for Microcom Network Protocol 5. While it can provide better
compression than V.42bis, it can only do so on compressible files. If you
transfer data that is already compressed, MNP5 may actually decrease your
throughput as it attempts to compress the data further. Many modems sup-
port the use of both MNP5 and V.42bis, and will select the appropriate com-
pression algorithm depending on the data being sent. To enable MNP5 and
V.42bis, the modem string is AT%C3. To enable just MNP5, use AT%C1.

Software compression

Enabling PPP compression can further increase throughput. Since PPP is im-
plemented in a host computer (and not modem hardware), there are more ag-
gressive compression algorithms available that can increase throughput by
consuming slightly more CPU and RAM. The three most popular PPP com-
pression algorithms are BSD Compression, Van Jacobson, and deflate.

BSD Compression

The BSD Compression protocol (bsdcomp) is outlined in RFC1977. The algo-
rithm is the same that is used in the ubiquitous UNIX compress command. Itis
freely and widely distributed and has the following features. It supports Auto-
matic optimisation and disabling of compression when doing so would be inef-
fective. Since it has been widely used for many years, it is stable and well sup-
ported by virtually all PPP implementations.

To enable PPP in pppd 2.4.3, add the following directive to your command line
(or options file): compress 15,15

VAN Jacobson (VJ)

Van Jacobson (VJ) header compression, detailed in RFC1144, is specifically
designed to improve performance over serial links.

VJ compression reduces the 40 byte TCP/IP packet header to 3-4 bytes by
tracking the state of TCP session on both sides of the link. Only the differences
in header changes are sent in future transmissions. Doing this drastically im-
proves performance and saves on average of 36 bytes per packet. VJ com-

Chapter 6: Performance Tuning 221

pression is included in most versions of PPP. To enable Van Jacobson com-
pression, add this to your PPP configuration: vj-max-slots 16

Deflate

The deflate compression algorithm (RFC1979) is based on the Lempel-Ziv
LZ77 compression algorithm. The GNU project and the Portable Network
Graphics working group have done extensive work to support the patent-free
status of the deflate algorithm. Most PPP implementations support the deflate
compression algorithm.

To enable deflate compression, use this PPP option: deflate 15,15

Bandwidth accounting

Bandwidth accounting is the process of logging bandwidth usage on a per-IP or
per-user basis. This can make it very easy to derive statistics about how much
bandwidth individual users and machines are consuming. By using accounting
techniques, you can generate hard statistics that can be used to enforce quotas
or limits.

Squid bandwidth accounting

If you use authentication on your Squid cache, it can be desirable to perform
bandwidth reporting or accounting broken down per user. If you intend to intro-
duce quotas, or if you want to charge your users for access, you will have to
keep records of each user's utilisation. There are many ways to do this by ap-
plying some simple scripts. This example is a quick recipe for basic bandwidth
accounting. Feel free to adapt it to fit your own organisation.

To begin, you will obviously need a Squid server configured for user authentica-
tion (page 186). You will also need a server with AMP (Apache, Mysql, PHP,
and Perl) installed. If your network is relatively small, these can be installed on
the same box as the Squid server. For busier environments, you should install
these components on a separate machine. You will also need to install Perl
(with the Perl DBI interface) on the Squid server. If you wish to implement this
without the user front end, you only need Perl and a MySQL database.

First, download the example scripts from http://bwmo.net/. On the MySQL
server, create the database tables by following the instructions provided in the
mysqgl-setup.txt file included in the archive.

Next, copy the dolog.pl script to the MySQL server. This script will parse the
log entries, and enter a summary of the user and site information into the data-

222 Chapter 6: Performance Tuning

base. Edit it to reflect the user name and password needed to connect to the
MySQL database. Schedule a cron job to run the script every half hour or so.

On the Squid server, you will need to run the script squidlog.pl. You should
insert the correct values for the MySQL server network address, user name,
and password, as well as the correct path to the Squid log file. This script
should be put in a cron job to run at some suitable interval (for example, every
15 or 30 minutes).

Finally, on the web server, make sure Apache is configured to use PHP with the
LDAP extension installed. Extract and place the contents of the tar file into your
web server's document directory. Edit config.php to include the correct val-
ues for the LDAP authentication source, and then visit the directory in your web
browser.

You should now be able to log in as a user and view your browsing history.
Even if you do not use the web application to give your users access to the da-
tabase, you will still have a database that you can use for your own needs. This
provides a perfect base to implement quotas, generate a report of the top 100
users and web sites visited, and so on. You can use any SQL tool you like
(such as phpMyAdmin) to view the data, and can make simple scripts to pro-
vide reports and even take action when certain thresholds are crossed. When
used in conjunction with a redirector (page 184), you can automatically notify
users when their bandwidth consumption reaches a specified limit.

Bandwidth accounting with BWM tools

As mentioned earlier, BWM Tools is a full-featured firewall, shaping, logging,
and graphing system. It can be integrated with RRDtool to generate live
graphs, including bandwidth utilisation and statistics.

Setting up of BWM Tool flows for reporting purposes is very simple. To log data
every 5 minutes, add this to your configuration file:

<traffic>
<flow name="smtp_inbound" max-rate="16384" report-timeout="300">
inbound;
</flow>
<flow name="smtp_ outbound" max-rate="8192" report-timeout="300">
outbound;
</flow>
</traffic>

If you want to log directly to an RRD file, you can set it up like this:
<traffic>

<flow name="smtp_inbound" max-rate="16384" report-timeout="300"
report-format="rrd">

Chapter 6: Performance Tuning 223

inbound;
</flow>
<flow name="smtp_outbound" max-rate="8192" report-timeout="300"
report-format="rrd">
outbound;
</flow>
</traffic>

You can now use RRDtool (page 83) or an integrated package (such as Cacti,
page 84 or Zabbix, page 89) to display graphs based on the data files gener-
ated above.

Linux interface bandwidth accounting with RRDtool

Using a simple Perl script with RRDtool integration, you can monitor interface
bandwidth usage and generate live graphs by polling an interface directly on a
Linux server.

You will need this script:
http://www.linuxrulz.org/nkukard/scripts/bandwidth-monitor

Edit the script and change eth0 to match the interface you wish to monitor.
You create the RRD files by running the script with the --create-rrd switch:

bandwidth-monitor --create-rrd

This will create the file /var/log/bandwidth.rrd. To start the bandwidth
monitor, run this command:

bandwidth-monitor --monitor

The script will keep running and will log traffic statistics every five minutes. To
view live statistic graphs, download this cgi and put it into your web server's
cgi-bin directory:

http://www.linuxrulz.org/nkukard/scripts/stats.cgi

Now visit that script in your web browser to see the flow statistics for the inter-
face being monitored.

VSAT optimisation

(Note: This portion was adapted from the VSAT Buyer's Guide, and is used with
permission. This guide is also released under a Creative Commons license,
and is full of valuable information that is useful when comparing satellite com-
munications systems. For the full guide, see http://ictinafrica.com/vsat/).

224 Chapter 6: Performance Tuning

VSAT is short for Very Small Aperture Terminal, and is often the only viable
connectivity option for very remote locations. There are a whole host of techni-
cal considerations you will need to make when buying a VSAT. Most of them
involve making trade-offs among the technical characteristics that give you
what you want and what you can afford. The common considerations you may
be forced to make are:

- Whether to use inclined orbit satellites
« Whether to use C or Ku band

« Whether to use shared or dedicated bandwidth

The technology you choose will necessarily need to balance operating costs
with performance. Here are some points to keep in mind when choosing a
VSAT provider.

Use of inclined orbit satellite

The price of bandwidth on inclined orbit satellites is usually much lower since
these satellites are nearing their end of life. The downside is that it requires a
dish with tracking capabilities that can be very expensive. The high capital
costs associated with the expensive antenna can be offset by lower operating
costs, but only if you are purchasing large amounts of bandwidth. You should
therefore make sure that you carefully consider both your capital and operating
costs over the period you intend to operate the VSAT. Of course, remember to
ascertain the exact remaining life of the satellite, when making this considera-
tion. If you decide to opt for inclined orbit capacity, caution is advised as the
service can be down for a while in the event that you are running mission criti-
cal applications.

C band, Ku band, and Ka band

One of the big decisions you are likely to encounter when buying a VSAT is
whether to use C band or Ku band. In order to enable you to arrive at an in-
formed decision, we have briefly presented the advantages and disadvantages
of each band.

Advantages of using C band

- C band is less affected by rain. If you happen to live in a high rain-fall area
such as the tropics and your VSAT applications are “mission critical," in other
words, you want your system available all the time, you can opt for C band
over Ku band. However, this does not exclude the use of Ku band systems in
the tropics especially for home TV and Internet access since these are not
mission critical applications and the consumers can live with a few hours of
intermittent service.

Chapter 6: Performance Tuning 225

- C band systems have been around longer than Ku band systems and
thus rely on proven technology. However, Ku band systems seem to be
overtaking C band systems as the preferred technology in the home con-
sumer business in the last few years. Note that Ku band dishes are more
likely to be smaller and therefore cheaper for any given application, because
of Ku band’s higher frequencies. You should also bear in mind that Ku band
bandwidth prices are higher than C band prices and therefore any savings on
capital costs could be offset by higher operating costs.

- C band satellite beams have large foot prints. The global beam for C band
covers almost a third of the earth’s surface. If you are looking for single satel-
lite hop operation (e.g. for real time applications such as VolP or video con-
ferencing) to connect locations far apart from one another, you may be forced
to choose the wider coverage C band beams. However, the latest satellites
launched have large Ku band beams covering entire continents. You should
also note that two beams on the satellites can be connected through a
method called “cross strapping” thus allowing two or more locations covered
by two separate beams to be connected in a single hop.

Disadvantages of C band

- C band requires the use of larger dishes. They can be quite cumbersome
to install and are more expensive to acquire and transport.

- C band systems share the same frequency bands as allocated to some
terrestrial microwave systems. As such, care must be taken when position-
ing C band antennas in areas where terrestrial microwave systems exist (for
example TV or radio stations). For this reason, C band satellite transponder
power is deliberately limited during the satellite’s design and manufacture
according to sharing criteria laid down by the ITU, leading to a requirement
for larger dishes on the ground.

Advantages of Ku band

- Ku band systems require smaller dishes. Because of their higher satellite
transponder power and higher frequencies, they can use smaller, cheaper
antennas on the ground and therefore reduce startup and transport costs.

- The smaller Ku Band dishes can be easily installed on almost any sur-
face. For example, they can be installed on the ground, mounted on roofs, or
bolted to the side of buildings. This is an important consideration for areas
with limited space.

226 Chapter 6: Performance Tuning

Disadvantages of Ku band

Ku band systems are more affected by rainfall. Because of their higher
operating frequencies, they are usually considered unsuitable for mission
critical applications in the tropics, unless specific measures are taken to pro-
vide for the added rain attenuation. For example, this can be overcome by
using larger dishes. This drawback has also been slightly offset by the higher
power satellites being manufactured today. As noted above, Ku band sys-
tems are gaining popularity even in the tropics for home use where users can
survive a few hours of intermittent service a month.

Ku band satellite systems usually have smaller beams covering a small
surface of the earth. Therefore if you intend to cover two locations a large
distance apart, within a single hop or with a broadcast system, you may need
to consider C band systems.

Ku band bandwidth is more expensive that C band bandwidth. As noted
above, the savings in capital cost you gain using Ku band’s smaller antennas
may be negated by the higher operating costs imposed by high bandwidth
prices.

Advantages of Ka band

Ka band dishes can be much smaller than Ku band dishes. This is due
to the even higher Ka band frequencies and higher satellite power. The
smaller dishes translate to lower start up costs for equipment.

Disadvantages of Ka band

The higher frequencies of Ka band are significantly more vulnerable to
signal quality problems caused by rainfall. Therefore, Ka band VSATs are
usually unsuitable for mission critical or high availability systems in the tropi-
cal and sub-tropical regions without the provision of measures to combat ad-
verse weather conditions.

Ka-band systems will almost always require tracking antennas. This
adds to complexity and startup costs.

Ka band bandwidth is more expensive than C band or Ku band band-
width.

The Ka band is currently unavailable over Africa.

Shared vs. dedicated bandwidth

It is critical for you to decide whether you will accept shared or dedicated
bandwidth. Shared bandwidth refers to bandwidth that is shared with other cus-

Chapter 6: Performance Tuning 227

tomers of your service provider. Dedicated bandwidth is "committed" solely to
you. Shared bandwidth is obviously cheaper than dedicated bandwidth be-
cause you are also sharing the cost of the bandwidth among other users. Un-
fortunately, some service providers pass off shared bandwidth as dedicated
bandwidth and charge you rates equivalent to those for dedicated bandwidth.
You therefore have to be clear about what you are buying.

Shared bandwidth is desirable when you will not be using all the bandwidth all
the time. If your primary applications will be email and web surfing and you do
not have many users, e.g. a community telecentre, then shared bandwidth may
well work for you. However, if you have a large volume of users accessing the
system throughout the day, or if you intend to run real time applications such as
telephony or video conferencing, then you will need dedicated bandwidth.

There is one instance when you should consider shared capacity even when
you have heavy users and real time applications. This is the situation in which
you own the entire network. You would essentially be buying a chunk of dedi-
cated bandwidth and then sharing its capacity among your network. The rea-
soning behind this is that if all VSATs are part of the same network, with the
same profile of user, then you are likely to have instances when capacity would
be unused. For instance, not all the VSATs in your network may be making
voice calls or participating in video conferencing all the time. This method is
especially suited to global organisations with offices in different time zones.

There are three key metrics you will need to consider when purchasing shared
bandwidth:

The Contention Ratio

Contention is a term that comes from terrestrial Internet systems such as Digi-
tal Subscriber Link (DSL) and refers to sharing. The contention ratio is the
number of users sharing the bandwidth. Obviously, the more users sharing the
bandwidth, the less bandwidth you get if they are all online. For instance, if you
are sharing bandwidth with a capacity of 1 Mbps among 20 customers (conten-
tion ratio of 20:1), then your maximum connection speed when all the custom-
ers are using the bandwidth is 50 kbps, equivalent to a dial up modem connec-
tion. If, however, the contention ratio is 50:1, or 50 customers sharing the con-
nection, then your maximum speed when all customers are using the system is
20 kbps. As you can imagine, how much of the 1 Mbps promised by the service
provider you actually get depends on the contention ratio. Contention is also
called “over booking” or “over selling” capacity.

Committed Information Rate (CIR)

Even with shared bandwidth capacity, your service provider may guarantee you
certain minimum capacity at all times. This guaranteed capacity is the CIR. In

228 Chapter 6: Performance Tuning

our example above using a contention ratio of 20:1, this CIR would be 50 kbps,
even though you are quoted a bandwidth capacity of 1 Mbps.

Bursting capacity

Bursting refers to the ability of a VSAT system to utilise capacity above and
beyond its normal allocation. Bursting is only possible when you purchase
shared bandwidth. If your service provider has implemented bursting, a portion
or all of the shared bandwidth capacity will be pooled. For instance, several
portions of 1 Mbps may be pooled together. When other customers are not us-
ing their capacity, you may be able to burst, or use more than your allocated
capacity. Note that bursting also only occurs when there is ‘free’ or available
capacity in the pool. The amount of additional or burst capacity to which any
VSAT station sharing the pool is entitle to is limited to a set maximum, usually
less than the total pool capacity to ensure that there is always capacity avail-
able for other VSAT stations.

In summary, when purchasing shared capacity, you should ask your service
provider to specify the contention ratio, your CIR, and how much bursting ca-
pacity you can get.

TCP/IP factors over a satellite connection

A VSAT is often referred to as a long fat pipe network. This term refers to
factors that affect TCP/IP performance on any network that has relatively large
bandwidth, but high latency. Most Internet connections in Africa and other parts
of the developing world are via VSAT. Therefore, even if a university gets its
connection via an ISP, this section might apply if the ISP's connection is via
VSAT. The high latency in satellite networks is due to the long distance to the
satellite and the constant speed of light. This distance adds about 520 ms to a
packet’s round-trip time (RTT), compared to a typical RTT between Europe and
the USA of about 140 ms.

Chapter 6: Performance Tuning 229

Thousands of Kilometers

Figure 6.8: Due to the speed of light and long distances involved, a single ping packet
can take more than 520 ms to be acknowledged over a VSAT link.

The factors that most significantly impact TCP/IP performance are long RTT,
large bandwidth delay product, and transmission errors.

Generally speaking, operating systems that support modern TCP/IP implemen-
tations should be used in a satellite network. These implementations support
the RFC1323 extensions:

» The window scale option for supporting large TCP window sizes (larger than
64KB).

- Selective acknowledgment (SACK) to enable faster recovery from trans-
mission errors.

- Timestamps for calculating appropriate RTT and retransmission timeout val-
ues for the link in use.

Long round-trip time (RTT)

Satellite links have an average RTT of around 520ms to the first hop. TCP uses
the slow-start mechanism at the start of a connection to find the appropriate
TCP/IP parameters for that connection. Time spent in the slow-start stage is
proportional to the RTT, and for a satellite link it means that TCP stays in slow-
start mode for a longer time than would otherwise be the case. This drastically
decreases the throughput of short-duration TCP connections. This is can be
seen in the way that a small website might take surprisingly long to load, but
when a large file is transferred acceptable data rates are achieved after awhile.

230 Chapter 6: Performance Tuning

Furthermore, when packets are lost, TCP enters the congestion-control phase,
and owing to the higher RTT, remains in this phase for a longer time, thus re-
ducing the throughput of both short- and long-duration TCP connections.

Large bandwidth-delay product

The amount of data in transit on a link at any point of time is the product of
bandwidth and the RTT. Because of the high latency of the satellite link, the
bandwidth-delay product is large. TCP/IP allows the remote host to send a cer-
tain amount of data in advance without acknowledgment. An acknowledgment
is usually required for all incoming data on a TCP/IP connection. However, the
remote host is always allowed to send a certain amount of data without ac-
knowledgment, which is important to achieve a good transfer rate on large
bandwidth-delay product connections. This amount of data is called the TCP
window size. The window size is usually 64KB in modern TCP/IP implementa-
tions.

On satellite networks, the value of the bandwidth-delay product is important. To
utilise the link fully, the window size of the connection should be equal to the
bandwidth-delay product. If the largest window size allowed is 64KB, the maxi-
mum theoretical throughput achievable via satellite is (window size) / RTT, or
64KB / 520 ms. This gives a maximum data rate of 123KB/s, which is 984
Kbps, regardless of the fact that the capacity of the link may be much greater.

Each TCP segment header contains a field called advertised window, which
specifies how many additional bytes of data the receiver is prepared to accept.
The advertised window is the receiver's current available buffer size. The
sender is not allowed to send more bytes than the advertised window. To
maximise performance, the sender should set its send buffer size and the re-
ceiver should set its receive buffer size to no less than the bandwidth-delay
product. This buffer size has a maximum value of 64KB in most modern TCP/
IP implementations.

To overcome the problem of TCP/IP stacks from operating systems that don't
increase the window size beyond 64KB, a technique known as TCP acknowl-
edgment spoofing can be used (see Performance Enhancing Proxy, below).

Transmission errors

In older TCP/IP implementations, packet loss is always considered to have
been caused by congestion (as opposed to link errors). When this happens,
TCP performs congestion avoidance, requiring three duplicate ACKs or slow
start in the case of a timeout. Because of the long RTT value, once this
congestion-control phase is started, TCP/IP on satellite links will take a longer
time to return to the previous throughput level. Therefore errors on a satellite
link have a more serious effect on the performance of TCP than do errors on

Chapter 6: Performance Tuning 231

low latency links. To overcome this limitation, mechanisms such as Selective
Acknowledgment (SACK) have been developed. SACK specifies exactly
those packets that have been received, allowing the sender to retransmit only
those segments that are missing because of link errors.

The Microsoft Windows 2000 TCP/IP Implementation Details White Paper
states

"Windows 2000 introduces support for an important performance feature
known as Selective Acknowledgment (SACK). SACK is especially impor-
tant for connections using large TCP window sizes."

SACK has been a standard feature in Linux and BSD kernels for quite some
time. Be sure that your Internet router and your ISP’s remote side both support
SACK.

Implications for universities

If a site has a 512 Kbps connection to the Internet, the default TCP/IP settings
are likely sufficient, because a 64 KB window size can fill up to 984 Kbps. But if
the university has more than 984 Kbps, it might in some cases not get the full
bandwidth of the available link due to the "long fat pipe network" factors dis-
cussed above. What these factors really imply is that they prevent a single ma-
chine from filling the entire bandwidth. This is not a bad thing during the day,
because many people are using the bandwidth. But if, for example, there are
large scheduled downloads at night, the administrator might want those down-
loads to make use of the full bandwidth, and the "long fat pipe network" factors
might be an obstacle. This may also become critical if a significant amount of
your network traffic routes through a single tunnel or VPN connection to the
other end of the VSAT link.

Administrators might consider taking steps to ensure that the full bandwidth can
be achieved by tuning their TCP/IP settings. If a university has implemented a
network where all traffic has to go through the proxy (enforced by network lay-
out), then the only machines that make connections to the Internet will be the
proxy and mail servers.

For more information, see http://www.psc.edu/networking/perf_tune.html/ .

Performance-enhancing proxy (PEP)

The idea of a Performance-enhancing proxy is described in RFC3135 (see
http://www.ietf.org/rfc/rfc3135), and would be a proxy server with a large disk
cache that has RFC1323 extensions, among other features. A laptop has a
TCP session with the PEP at the ISP. That PEP, and the one at the satellite
provider, communicate using a different TCP session or even their own proprie-

232 Chapter 6: Performance Tuning

tary protocol. The PEP at the satellite provider gets the files from the web
server. In this way, the TCP session is split, and thus the link characteristics
that affect protocol performance (long fat pipe factors) are overcome (by TCP
acknowledgment spoofing, for example). Additionally, the PEP makes use of
proxying and pre-fetching to accelerate web access further.

Such a system can be built from scratch using Squid, for example, or pur-
chased "off the shelf" from a number of vendors. Here are some useful links to
information about building your own performance enhancing proxy.

- "Enabling High Performance Data Transfers," Pittsburgh Supercomputing
Center: http://www.psc.edu/networking/projects/tcptune/

- RFC3135, "Performance Enhancing Proxies Intended to Mitigate Link-
Related Degradations."

« PEPsal, a Performance Enhancing Proxy implementation released under the
GPL: http://sourceforge.net/projects/pepsal/

Resources

- Adzapper: http://adzapper.sourceforge.net/

« Authentication in Squid, http://www.squid-cache.org/Doc/FAQ/FAQ-23.html

- Cache heirarchies with Squid,
http://squid-docs.sourceforge.net/latest/html/c2075.html

« DansGuard: http://dansguardian.org/

- dnsmasq caching DNS and DHCP server,
http://thekelleys.org.uk/dnsmasq/doc.html

« Enhancing International World Wide Web Access in Mozambique Through
the Use of Mirroring and Caching Proxies,
http://www.isoc.org/inet97/ans97/cloet.htm

- Fluff file distribution utility, http://www.bristol.ac.uk/fluff/

- Lawrence Berkeley National Laboratory's TCP Tuning Guide,
http://dsd.Ibl.gov/TCP-tuning/background.html

« Linux Advanced Routing & Traffic Control HOWTO,
http://lartc.org/lartc.html

« Microsoft Internet Security and Acceleration Server,
http://www.microsoft.com/isaserver/

« Microsoft ISA Server Firewall and Cache resource site,
http://www.isaserver.org/

Chapter 6: Performance Tuning 233

- Performance Enhancing Proxies Intended to Mitigate Link-Related Degrada-
tions, http://www.ietf.org/rfc/rfc3135

« PF: The OpenBSD Packet Filter FAQ, http://www.openbsd.org/faq/pf/

- Pittsburgh Supercomputing Center’s guide to Enabling High Performance
Data Transfers, http://www.psc.edu/networking/perf_tune.html

« SquidGuard: http://www.squidguard.org/
+ Squid web proxy cache, http://squid-cache.org/

« TCP Tuning and Network Troubleshooting by Brian Tierney,
http://www.onlamp.com/pub/a/onlamp/2005/11/17/tcp_tuning.html

« ViSolve Squid configuration manual,
http://www.visolve.com/squid/squid24s1/contents.php

- The VSAT Buyer's guide, http://ictinafrica.com/vsat/

+ Wessels, Duane. Squid: The Definitive Guide. O'Reilly Media (2004).
http://squidbook.org/

